427 research outputs found

    Electric-field control of interfering transport pathways in a single-molecule anthraquinone transistor

    Get PDF
    It is understood that molecular conjugation plays an important role in charge transport through single-molecule junctions. Here, we investigate electron transport through an anthraquinone based single-molecule three-terminal device. With the use of an electric-field induced by a gate electrode, the molecule is reduced resulting into a ten-fold increase in the off-resonant differential conductance. Theoretical calculations link the change in differential conductance to a reduction-induced change in conjugation, thereby lifting destructive interference of transport pathways.Comment: Nano Letters (2015

    Improving light harvesting in polymer photodetector devices through nanoindented metal mask films

    Get PDF
    To enhance light harvesting in organic photovoltaic devices, we propose the incorporation of a metal (aluminum) mask film in the system’s usual layout. We fabricate devices in a sandwich geometry, where the mask (nanoindented with a periodic array of holes of sizes d and spacing s) is added between the transparent electrode and the active layer formed by a blend of the semiconducting polymer P3HT and substituted fullerene. Its function is to promote trapping of the incident light into the device’s cavity (the region corresponding to the active layer). For d, we set a value that allows light diffraction through the holes in the relevant absorption range of the polymer. To optimize the mask structure, we consider a very simple model to determine the s leading to trapped fields that are relatively intense and homogeneous within the device. From measurements of the action spectra, we show that, indeed, such architecture can considerably improve the resulting photocurrent efficiencies—one order of magnitude in the best situation studied.

    2.5% efficient organic plastic solar cells

    Get PDF
    We show that the power conversion efficiency of organic photovoltaic devices based on a conjugated polymer/methanofullerene blend is dramatically affected by molecular morphology. By structuring the blend to be a more intimate mixture that contains less phase segregation of methanofullerenes, and simultaneously increasing the degree of interactions between conjugated polymer chains, we have fabricated a device with a power conversion efficiency of 2.5% under AM1.5 illumination. This is a nearly threefold enhancement over previously reported values for such a device, and it approaches what is needed for the practical use of these devices for harvesting energy from sunlight.

    Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products

    Get PDF
    We developed a low-cost, high-throughput microbiome profiling method that uses combinatorial sequence tags attached to PCR primers that amplify the rRNA V6 region. Amplified PCR products are sequenced using an Illumina paired-end protocol to generate millions of overlapping reads. Combinatorial sequence tagging can be used to examine hundreds of samples with far fewer primers than is required when sequence tags are incorporated at only a single end. The number of reads generated permitted saturating or near-saturating analysis of samples of the vaginal microbiome. The large number of reads al- lowed an in-depth analysis of errors, and we found that PCR-induced errors composed the vast majority of non-organism derived species variants, an ob- servation that has significant implications for sequence clustering of similar high-throughput data. We show that the short reads are sufficient to assign organisms to the genus or species level in most cases. We suggest that this method will be useful for the deep sequencing of any short nucleotide region that is taxonomically informative; these include the V3, V5 regions of the bac- terial 16S rRNA genes and the eukaryotic V9 region that is gaining popularity for sampling protist diversity.Comment: 28 pages, 13 figure

    Photovoltaic performance of an ultrasmall band gap polymer

    Get PDF
    A conjugated polymer (PBTTQ) that consists of alternating electron-rich bithiophene and electron-deficient thiadiazoloquinoxaline units was synthesized via Yamamoto polymerization with Ni(cod)(2) and provides a band gap of 0.94 eV. This represents one of the smallest band gaps obtained for a soluble conjugated polymer. When applied in a bulk heterojunction solar cell together with [84]PCBM as the electron acceptor, the polymer affords a response up to 1.3 mu m

    Fully direct written organic micro-thermoelectric generators embedded in a plastic foil

    Get PDF
    Organic materials have attracted great interest for thermoelectric applications due to their tuneable electronic properties, solution processability and earth-abundance, potentially enabling high-throughput realization of low-cost devices for low-power energy harvesting applications. So far, organic thermoelectricity has primarily focused on materials development, with less attention given to integrated generators. Yet, future applications will require the combination of efficient generators architectures and scalable manufacturing techniques to leverage the advantages of such promising materials. Here we report the realization of a monolithic organic micro-thermoelectric generator (μ-OTEG), using only direct writing methods, embedding the thermoelectric legs within a plastic substrate through a combination of direct laser writing and inkjet printing techniques. Employing PEDOT:PSS for the p-type legs and a doped fullerene derivative for the n-type ones, we demonstrate a μ-OTEG with power density of 30.5 nW/cm2 under small thermal gradients, proving the concrete possibility of achieving power requirements of low-power, distributed sensing applications
    • …
    corecore