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A B S T R A C T   

Organic materials have attracted great interest for thermoelectric applications due to their tuneable electronic 
properties, solution processability and earth-abundance, potentially enabling high-throughput realization of low- 
cost devices for low-power energy harvesting applications. So far, organic thermoelectricity has primarily 
focused on materials development, with less attention given to integrated generators. Yet, future applications 
will require the combination of efficient generators architectures and scalable manufacturing techniques to 
leverage the advantages of such promising materials. Here we report the realization of a monolithic organic 
micro-thermoelectric generator (μ-OTEG), using only direct writing methods, embedding the thermoelectric legs 
within a plastic substrate through a combination of direct laser writing and inkjet printing techniques. Employing 
PEDOT:PSS for the p-type legs and a doped fullerene derivative for the n-type ones, we demonstrate a μ-OTEG 
with power density of 30.5 nW/cm2 under small thermal gradients, proving the concrete possibility of achieving 
power requirements of low-power, distributed sensing applications.   

1. Introduction 

The thermoelectric effect enables the generation of sustainable en-
ergy by converting heat flux into electric power. Unfortunately, the high 
costs of the most advanced technologies [1–5], as the ones based on 
Bi-chalcogenides, have limited its fields of application [6,7]. Neverthe-
less, there is a wide range of possible applications for this technology in 
waste-heat energy harvesting, from industrial/automotive heat recovery 
to the emerging wearable electronics and Internet-of-Things (IoT) 
[8–10]. In particular, due to technological advances as well as compo-
nents downscaling, the power demand for distributed wireless sensors 
has drastically reduced, to the μW level [11,12]. Therefore, the imple-
mentation of a low-cost thermoelectric device, capable of delivering μW 
over cm2 areas when operating at limited temperature difference (ΔT), 
offers the opportunity to replace or complement batteries for powering 
IoT sensors. Indeed, these devices will have to work within limited 

temperature differences, going from 2 K, for wearable applications, to 
around 10 K, for integrated sensors networks [13]. Compact and thin 
thermoelectric generators (TEG) composed by thermocouples with 
lateral dimensions in the order of tens/hundreds of μm (μ-TEG), are 
ideal candidates for the TEG integration into sensors platforms. 

There has been a growing interest in doped organic semiconductors 
[14–18] to substitute Bi-based chalcogenides, which, albeit offering 
record thermoelectric properties, contain rare and toxic elements [6, 
19]. Organics, in that respect, represent a more sustainable approach 
and their solution-processability could be exploited to develop 
high-throughput, room-temperature processes based on printing tech-
niques to manufacture cost-effective organic μ-TEG (μ-OTEG) on flexible 
substrates. 

However, developing generators reaching μW, with only cm2 de-
vices, under small ΔT, not exceeding few tens of K, is still a challenge 
with organic semiconductors. The main obstacle is represented by 
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achieving compact, printed μ-OTEG with monolithic architectures. In 
fact, most of the studies conducted in the field of organic thermoelec-
tricity have been focused on the improvement of the thermoelectric 
performances [20–29], to fill the gap with inorganic technologies, while 
the development of suitable processing methods and devices architec-
ture lagged behind. Consequently, most of the OTEG reported to date are 
simple demonstrators of the thermoelectric properties [30], having 
either thermoelectric elements with dimensions in the order of milli-
miters, therefore compromising density and the achievement of a suit-
able output voltage over a limited area [31–34] or a planar geometry, i. 
e. thermocouples parallel to the flexible substrate, thus inherently 
characterized by a limited number of low-density thermocouples 
[35–39]. Indeed, so far, there has been no demonstration in literature of 
μ-OTEGs and of the possibility of employing scalable manufacturing 
techniques to realize conformable and compact thermoelectric devices. 

To address this limit, here we propose and demonstrate a monolithic 
μ-OTEG embedded in a plastic film, minimizing the heat losses through 
the substrate, and fabricated only by means of direct-writing digital 
processes, paving the way to mass manufacturing of cost-effective har-
vesters. Our strategy combines femtosecond-pulse laser ablation of 
micro-cavities and their filling with p- and n-type organic conductors by 
inkjet printing. By adopting printable formulations of PEDOT:PSS for p- 
type legs and of a doped fullerene derivative for n-type ones, we realize 
the first example of an integrated μ-OTEG adopting scalable processing 
and based on printed conductive organic materials. We achieve a 
maximum power density of 30.5 nW/cm2 with a ΔT ¼ 25 K around room 
temperature (RT, 303 K). This result, obtained on a proof-of-concept 
device, demonstrates the possibility of delivering μW to a load with 
only a few cm2 μ-OTEG just by geometrical tailoring. 

2. Experimental 

2.1. Materials 

The p-type semiconductor is a commercial formulation of PEDOT: 
PSS (PJ700) supplied by Heraeus. The Ag-nanoparticles ink (ANP DGP 
40LT-15C) was purchased from Sigma-Aldrich. PTEG-1 was synthesized 
according to a previously published procedure [40]. 

2.2. Femtosecond laser writing 

All μ-TEGs have been realized using only direct writing techniques 
on flexible commercial PEN substrates with different thicknesses (25, 50 
and 125 μm) which have been supplied from DuPont Teijin Films. The 
thermocouples area was defined on the substrates using Femtosecond 
Micromachining to realize 3D conical cavities passing throughout the 
PEN film. The micromachining system is equipped with a regenerative 
amplified mode-locked femtosecond laser source based on Yb:KGW 
active medium (Light Conversion, Pharos) whose amplified pulses at the 
fundamental wavelength (1030 nm) are characterized by duration of 
240 fs, repetition rate up to 1 MHz and pulse energy up to 0.2 mJ. In 
order to create the holes array, the following writing parameters were 
set: 2nd harmonic λ ¼ 515 nm, 100 kHz repetition rate and average 
power 120 mW. Each hole was obtained through the irradiation of 150 
pulses on the exact same position. The laser light was statically focused 
on the substrate surface through a telecentric microscope objective 
(10X, Mitutoyo) and the 2D structure is achieved moving the sample. 
Computer-controlled, 3-axis air-bearing translation stages (ABL-1000, 
Aerotech) with maximum resolution of few tens of nm over a wide 
range, interfaced by CAD-based software (ScaBase, Altechna) were used 
to translate the sample relative to the desired laser irradiation patch and 
energy density pulse deposition. 

2.3. Inkjet printing of materials 

The p-type PEDOT:PSS ink was deposited using Fujifilm Dimatix 

Materials Printer DMP-2831 at a plate temperature of 40 �C. For the n- 
type doped semiconductor PTEG-1, a 10 mg/ml solution in o-xylene was 
prepared and printed in the same conditions as its p-type counterpart. 
The electrical contacts and the connections were printed using ANP DGP 
40LT-15C ink, supplied by Sigma Aldrich, printed at RT. Once all the 
materials were printed, the devices were annealed overnight in N2 at-
mosphere at 120 �C, to evaporate all the solvents residuals, promote 
dopant diffusion and to sinter the silver nanoparticles into a compact 
film. Finally, the devices were capped for protection and electrical 
insulation purposes using a thin poly(methyl methacrylate) (PMMA) 
layer, spin coated from a solution of 120 mg/ml in N-butyl-acetate. 

2.4. TEGs characterization 

A home-build set-up [41] was used to measure the performances of 
the devices. The measurements were performed in combination with a 
variable resistor as load in order to evaluate the presence of non-Ohmic 
effects. 

3. Results 

3.1. μ-OTEG architecture and fabrication 

In order to drastically reduce thermal losses inherent to the use of a 
flexible and insulating plastic substrate, we designed a device archi-
tecture embedded into a PEN foil, realizing a compact and monolithic 
μ-OTEG. To this end, through holes had to be fabricated into the plastic 
foil in correspondence of the thermoelectric legs. Such architecture 
presents a challenge when it comes to filling the holes with the ther-
moelectric ink, since the fluid can spill from the opposite side. 

Therefore, we devised a layout of the through holes to solve this 
problem. Instead of fabricating a single hole for each leg, we created 
arrays of micro-cavities covering the leg footprint (Fig. 1a), which in the 
proposed device is a square with 200 μm lateral dimension. To this aim, 
we adopted fs-laser writing, a direct-writing yet highly parallelizable 
technique [42,43]. The fs-laser writing allows depositing energy in the 
matter in a very controlled way thanks to highly non-linear processes 
(multiphoton absorption) that arise only at high optical energy density. 
By focusing an ultra-short pulsed laser (fs) inside the material through a 
high aperture numerical objective, the “cold” processing of the material 
takes place only within the volume of the focused spot, normally a few 
μm2, obtaining a micron controlled ablation of the plastic. The fabri-
cated cavities have a truncated cone shape with a larger top diameter, 
around 20 μm, and smaller bottom diameter, of about 6 μm (Fig. 1b). 
This peculiar shape has the advantage of allowing the penetration of the 
thermoelectric inks inside the cavities from the larger diameter side due 
to capillary effect, while blocking their exit from the other owing to the 
rheological properties of the fluid. 

After the ablation of the cavities, the p- and n-type materials are 
deposited by inkjet printing in correspondence of the top openings 
(Fig. 1c). An example of a micro-cavity filled with an inkjet-printed 
thermoelectric material is reported in Fig. 1d. Following the printing 
of the active materials, bottom and top side electrical interconnections 
are fabricated, by inkjet printing first a thin PEDOT:PSS interlayer fol-
lowed by a silver-based ink (Fig. 1e and f). Such a double-layer improves 
contact to the active legs and make them more mechanically robust 
(Fig. SI1). Finally, the devices are capped on both sides using a PMMA 
layer with a thickness of about 1 μm for electrical insulation. The 
resulting flexible μ-OTEG is a matrix of 16 � 16 thermoelectric legs, 
realizing 128 thermocouples, and occupies an area of 0.36 cm2 (Fig. 1g). 
The devices realized are proof-of-concepts and therefore the thermo-
couples geometry was kept as simple as possible, but the flexibility of the 
employed digital processes ensures the possibility to realize far more 
compact geometries, to maximize the fill factor [44], and to match the 
thermoelectric properties of the p- and n-type legs. 

Overall, the process that we developed combines, as never done 
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before, fs-laser patterning and inkjet printing to fabricate a 3D struc-
tured organic device and possesses three main advantages: a highly 
compact device structure, the possibility of easily changing the 3D ge-
ometry of the thermocouples to maximize the power output, depending 
on the thermoelectric properties of the materials, and better thermal 
coupling due to the removal of the plastic substrate. Such important 
features are obtained by renouncing to part of the active area, as the 
micro-cavities occupy only a fraction of the whole leg footprint. 
Nevertheless, since the minimum resolution of the adopted direct- 
writing techniques is well below what implemented in this demonstra-
tion, such aspect, as well as the square size of the legs and relative dis-
tances can be largely engineered to achieve a much denser 
configuration. 

3.2. P-type only generators 

At first, to validate the process and our device architecture, we opted 
for a simplified generator. P-type only legs are printed and n-type ones, 
more challenging to be realized because of the present limits with stable 
and printable n-type doped organic semiconductors [45], are substituted 
by a metallic interconnection, short-circuiting the device top and bottom 
sides. For the p-type legs we adopted an inkjet printable formulation of 

PEDOT:PSS (Heraeus PJ700). Such material at 303 K delivers a Seebeck 
coefficient (α) of ~11 μV/K, an electrical conductivity in the 
out-of-plane direction (σ┴) of ~1 S/cm and an out-of-plane thermal 
conductivity (k┴) of 0.5 W/mK [46]. The selected formulation represents 
a good model p-type material to assess the quality of the proposed device 
architecture. 

The vertical metallic interconnections have been realized by inkjet 
printing a silver nanoparticles-based ink (ANP DGP 40LT-15C). We 
chose to limit the printed ink volume below 1 nl, compared to hundreds 
of nl for the p-type semiconductor. With such volume, the ink covers 
only the cavity walls without filling them completely (Fig. SI2), granting 
an interconnection but limiting the negative effect of Ag high thermal 
conductivity on the harvesting performances of the device. 

The first p-type only μ-OTEG was embedded in a 25 μm thick sub-
strate, thus defining thermocouples of an equivalent height, with a total 
internal resistance of 1.6 kΩ. Such μ-OTEG, as well as all devices re-
ported in this work, was characterized with an home-built set-up [41], 
measuring the thermopower around room temperature (~303 K) and 
under small temperature gradients (from 5 to 25 K), thus under plausible 
conditions of actual use. Fig. 2a displays the power density (Pd) as a 
function of the load current (IOut): a parabolic dependence, with a 
maximum of e3 nW/cm2 (ΔT ¼ 25 K), as function of the circuit current 

Fig. 1. μ-OTEG fabrication: a) fs-laser writing of micro-cavities defining the embedded thermocouples within the PEN film. b) SEM cross-section of a single cavity in 
a 50 μm thick PEN substrate. c) Inkjet printing of the thermoelectric materials within the cavities. d) SEM cross-section of a single cavity after the printing of the 
PEDOT:PSS ink. e) Inkjet printing of the electrical contacts using a silver nanoparticle-based ink. f) Optical microscope image of the final layout comprising the 
thermocouples. g) Photograph of the complete flexible device. 
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can be observed, as expected from equation (1): 

Pd ∝
RTEGIOut

VTEG
�

R2
TEGI2

Out

V2
TEG

(1)  

where RTEG represents the TEG resistance and VTEG represents the 
thermovoltage generated. Therefore, the p-type only device fabricated 
according to the proposed architecture behaves as an ideal thermo-
electric generator (VOut vs. IOut is shown in Fig. SI3), thus providing a 
first proof that the process we implemented is indeed suitable for the 
fabrication of integrated TE devices. 

The limited Pd, besides suffering from the use of p-type only con-
ductors, depends also on the relatively short legs adopted. Indeed, 
higher values of thermovoltage are expected to be generated by 
increasing thermocouples height as an effect of a higher effective tem-
perature difference across the active material [13]. This can be simply 
obtained by embedding the devices into thicker plastic foils. 

To assess the increase of the generated output power with thickness, 
we fabricated devices by employing substrates of 50 and 125 μm 
thickness (Fig. SI4). The p-type thermocouples embedded in the sub-
strates have a resistance that increases linearly as a function of the 
height (Fig. SI5). The corresponding generators have a thermovoltage 
that linearly depends on the external temperature, and have a power 
density scaling quadratically with ΔT. Interestingly, such dependence 
nicely matches what predicted by a 1D heat-transfer model [13] (Fig. 2b, 
Fig. SI6 and Supplementary Note 1). Therefore, it is possible to conclude 
that the process and architecture are flexible towards geometrical op-
timizations in order to improve the thermopower output of the device as 
a function of a given set of thermoelectric materials. 

3.3. OTEGs integrating inkjet-printed p-type and n-type materials 

After the validation of the μ-OTEG fabrication process through the 
realization of devices using only a p-type doped organic semiconductor, 
a complete thermoelectric generator integrating both p- and n-type 
doped materials was realized. Clearly, the addition of n-type legs, in 
electrical series and thermal parallel with the p-type ones, can improve 
the output power by addition of a thermovoltage component and by 
increasing the device thermal insulation, thus intercepting a larger 
effective temperature gradient across the active materials. 

The device architecture is identical to the one previously demon-
strated, where, instead of Ag, an n-type leg was realized by inkjet 

printing a suitable n-type doped organic semiconductor. Achieving good 
organic n-type thermoelectric materials that are both printable and 
stable to ambient processing is still a challenge [47–49]. Here we 
adopted a fullerene derivative, a [60]fulleropyrrolidine, with an addi-
tional polar triethylene glycol ether side chain, dubbed PTEG-1, that is 
able to reach a power factor of 16.7 μW/mK2 and an electrical con-
ductivity of 2.05 S/cm, both amongst the highest values ever obtained 
for a doped n-type organic semiconductor [50,51]. 

The final P/N μ-OTEG generator comprises 48 integrated thermo-
couples, embedded in a 25 μm thick plastic film, with an internal 
resistance of 60 kΩ. The device voltage output and power density as a 
function of the load current are reported in Fig. 3a and b, respectively. A 
linear dependence of the generated voltage (e32 mV for ΔT ¼ 25 K) and 
a parabolic shape of the power density (maximum of 30.5 nW/cm2 for 
ΔT ¼ 25 K) are observed also in this case. The voltage and power density 
output as a function of the external temperature difference are shown in 
Fig. 3c and d respectively. The voltage scales linearly with increasing 
ΔT, while the power density output shows a quadratic dependence. This 
data further confirms the ideality of the device (electrical scheme of an 
ideal TEG in Fig. SI7). Compared to the P-type only μ-OTEG with the 
same thickness, an increase by more than a factor of 10 in the power 
density was obtained. 

Therefore, as expected, the introduction of an n-type doped semi-
conductor led to a significant improvement in the thermoelectric per-
formances both in terms of voltage and power output, now reaching an 
remarkable power density for a fully organic thermoelectric generator 
[31,32], here achieved in a compact μ-TEG integrating printed p-type 
and n-type legs. The versatility of the proposed architecture and process 
will make it possible to further improve the thermoelectric perfor-
mances in future. For example, by increasing the thermocouple height 
up to a value of 200 μm, the power output can be predicted to reach 
values in the order of 200 nW/cm2 already with the reference materials 
here adopted. Such power density would enable delivering μW electrical 
power, as required by low-power distributed sensors, at ΔT ¼ 25 K with 
a device of only few cm2. 

4. Conclusions 

We have presented a novel architecture and process for the fabri-
cation of a vertical μ-OTEG embedded in a plastic substrate, employing 
only direct writing techniques, such as inkjet printing for all active 

Fig. 2. Thermoelectric characterization of the p-type only μ-OTEG integrating 128 thermocouples: a) Power density (Pd) as a function of the load current (IOut): its 
shape is an indication of the fully ohmic behaviour of the TEG. b) Thermocouple power density as a function of the thermocouple height (LTC): the experimental 
values (black symbols) are compared with the simulated data (blue line). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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materials and interconnections, and fs-micromachining for definition of 
high resolution leg cavities in the substrate. Our approach provides 
flexibility in the control of the 3D geometrical parameters of the ther-
mocouples and allows to create highly dense structures in order to 
maximize the devices performances. The architecture and process were 
validated at first by fabricating a P-type only generator, demonstrating 
the ideal increase of power density with thermocouple height, simply 
achieved by adopting thicker substrates, up to 125 μm. Following such 
validation, we introduced an n-type fullerene derivative to realize a P/N 
μ-OTEG, delivering a record power density for fully organic micro- 
generators, in the order of 30 nW/cm2 at ΔT ¼ 25 K. 

The presented μ-OTEG qualifies as a platform to deliver real case 
applications of organic thermoelectric materials. If we consider the 
possibility of employing, as p-type semiconductor, a DMSO treated 
PEDOT:PSS [52] (S ¼ 80 μV/K, σ ¼ 900 S/cm and k┴ ¼ 0.25 W/mK) and 
the same fullerene derivative employed in this work, which is currently 
one of the best n-type TE semiconductors, power density values around 
the μW/cm2 are theoretically reached already at ΔT ¼ 25 K and even 
lower temperature gradients (Fig. SI8). Moreover, the potential of the 
presented architecture goes beyond organic devices, as it is compatible 
with any solution processable thermoelectric material. Power density 
values around 10 μW/cm2 are achievable employing already existing 
composites such as, for example, SeSn nanosheets (NS) and PEDOT:PSS 
[53] (S ¼ 100 μV/K, σ ¼ 300 S/cm and k┴ ¼ 0.3 W/mK) blends and a 

solution printable hybrid ink made by TiS2 NS and fullerene [54] (S ¼
� 100 μV/K, σ ¼ 380 S/cm and k┴ ¼ 0.6 W/mK), as shown in Fig. SI9. 
Such values, potentially reachable with already available materials 
thanks to our architecture, would allow to further expand the range of 
applications served by cost-effective thermoelectric harvesters. There-
fore, the proposed μ-OTEG has the potential to pave the way for a new 
generation of mass-produced and cost-effective, highly compact 
organic-based TEG serving real-life, low-power applications. 
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