5 research outputs found

    Household cost of malaria overdiagnosis in rural Mozambique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is estimated that over 70% of patients with suspected malaria in sub-Saharan Africa, diagnose and manage their illness at home without referral to a formal health clinic. Of those patients who do attend a formal health clinic, malaria overdiagnosis rates are estimated to range between 30–70%.</p> <p>Methods</p> <p>This paper details an observational cohort study documenting the number and cost of repeat consultations as a result of malaria overdiagnosis at two health care providers in a rural district of Mozambique. 535 adults and children with a clinical diagnosis of malaria were enrolled and followed over a 21 day period to assess treatment regimen, symptoms, number and cost of repeat visits to health providers in patients misdiagnosed with malaria compared to those with confirmed malaria (determined by positive bloodfilm reading).</p> <p>Results</p> <p>Diagnosis based solely on clinical symptoms overdiagnosed 23% of children (<16y) and 31% of adults with malaria. Symptoms persisted (p = 0.023) and new ones developed (p < 0.001) in more adults than children in the three weeks following initial presentation. Adults overdiagnosed with malaria had more repeat visits (67% v 46%, p = 0.01–0.06) compared to those with true malaria. There was no difference in costs between patients correctly or incorrectly diagnosed with malaria. Median costs over three weeks were 0.28forthosewhohadonevisitand0.28 for those who had one visit and 0.76 for ≥ 3 visits and were proportionally highest among the poorest (p < 0.001)</p> <p>Conclusion</p> <p>Overdiagnosis of malaria results in a greater number of healthcare visits and associated cost for adult patients. Additionally, it is clear that the poorest individuals pay significantly more proportionally for their healthcare making it imperative that the treatment they receive is correct in order to prevent wastage of limited economic resources. Thus, investment in accurate malaria diagnosis and appropriate management at primary level is critical for improving health outcomes and reducing poverty.</p

    Utilizing direct skin feeding assays for development of vaccines that interrupt malaria transmission: A systematic review of methods and case study.

    Get PDF
    Shifting the malaria priorities from a paradigm of control and elimination to a goal of global eradication calls for renewed attention to the interruption of malaria transmission. Sustained progress toward eradication will require both improved understanding of infectious reservoirs and efficient development of novel transmission-blocking interventions, such as rapidly acting and highly efficacious therapeutics and vaccines. Here, we review the direct skin feeding assay (DSF), which has been proposed as a valuable tool for measuring the in natura transmission of malaria parasites from human hosts to mosquito vectors across heterogeneous populations. To capture the methodological breadth of this assay's use, we first systematically review and qualitatively synthesize previously published investigations using DSFs to study malaria transmission in humans. Then, using a recent Phase 1 trial in Mali of the Pfs25H-EPA/Alhydrogel® vaccine candidate (NCT01867463) designed to interrupt Plasmodium falciparum transmission as a case study, we describe the potential opportunities and current limitations of utilizing the endpoints measured by DSF in making early clinical decisions for individually randomized transmission-interrupting intervention candidates. Using simulations based on the data collected in the clinical trial, we demonstrate that the capacity of the DSF to serve as an evaluative tool is limited by the statistical power constraints of the "effective sample size" (i.e. the number of subjects that are capable of transmitting at the time of feeding). Altogether, our findings suggest DSFs have great potential utility for assessing the public health impacts of emerging antimalarial tools, but additional research is needed to address issues of scalability and to establish correlation with community-wide clinical endpoints as well as complementary in vitro measures, such as standard membrane feeding assays

    Epstein-Barr Virus BGLF4 Kinase Retards Cellular S-Phase Progression and Induces Chromosomal Abnormality

    Get PDF
    Epstein-Barr virus (EBV) induces an uncoordinated S-phase-like cellular environment coupled with multiple prophase-like events in cells replicating the virus. The EBV encoded Ser/Thr kinase BGLF4 has been shown to induce premature chromosome condensation through activation of condensin and topoisomerase II and reorganization of the nuclear lamina to facilitate the nuclear egress of nucleocapsids in a pathway mimicking Cdk1. However, the observation that RB is hyperphosphorylated in the presence of BGLF4 raised the possibility that BGLF4 may have a Cdk2-like activity to promote S-phase progression. Here, we investigated the regulatory effects of BGLF4 on cell cycle progression and found that S-phase progression and DNA synthesis were interrupted by BGLF4 in mammalian cells. Expression of BGLF4 did not compensate Cdk1 defects for DNA replication in S. cerevisiae. Using time-lapse microscopy, we found the fate of individual HeLa cells was determined by the expression level of BGLF4. In addition to slight cell growth retardation, BGLF4 elicits abnormal chromosomal structure and micronucleus formation in 293 and NCP-TW01 cells. In Saos-2 cells, BGLF4 induced the hyperphosphorylation of co-transfected RB, while E2F1 was not released from RB-E2F1 complexes. The E2F1 regulated activities of the cyclin D1 and ZBRK1 promoters were suppressed by BGLF4 in a dose dependent manner. Detection with phosphoamino acid specific antibodies revealed that, in addition to Ser780, phosphorylation of the DNA damage-responsive Ser612 on RB was enhanced by BGLF4. Taken together, our study indicates that BGLF4 may directly or indirectly induce a DNA damage signal that eventually interferes with host DNA synthesis and delays S-phase progression

    A rapid and scalable density gradient purification method for <it>Plasmodium</it> sporozoites

    No full text
    Abstract Background Malaria remains a major human health problem, with no licensed vaccine currently available. Malaria infections initiate when infectious Plasmodium sporozoites are transmitted by Anopheline mosquitoes during their blood meal. Investigations of the malaria sporozoite are, therefore, of clear medical importance. However, sporozoites can only be produced in and isolated from mosquitoes, and their isolation results in large amounts of accompanying mosquito debris and contaminating microbes. Methods Here is described a discontinuous density gradient purification method for Plasmodium sporozoites that maintains parasite infectivity in vitro and in vivo and greatly reduces mosquito and microbial contaminants. Results This method provides clear advantages over previous approaches: it is rapid, requires no serum components, and can be scaled to purify >107 sporozoites with minimal operator involvement. Moreover, it can be effectively applied to both human (Plasmodium falciparum, Plasmodium vivax) and rodent (Plasmodium yoelii) infective species with excellent recovery rates. Conclusions This novel method effectively purifies viable malaria sporozoites by greatly reducing contaminating mosquito debris and microbial burdens associated with parasite isolation. Large-scale preparations of purified sporozoites will allow for enhanced in vitro infections, proteomics, and biochemical characterizations. In conjunction with aseptic mosquito rearing techniques, this purification technique will also support production of live attenuated sporozoites for vaccination.</p

    A Diverse Assemblage of Reef Corals Thriving in a Dynamic Intertidal Reef Setting (Bonaparte Archipelago, Kimberley, Australia)

    Get PDF
    The susceptibility of reef-building corals to climatic anomalies is well documented and a cause of great concern for the future of coral reefs. Reef corals are normally considered to tolerate only a narrow range of climatic conditions with only a small number of species considered heat-tolerant. Occasionally however, corals can be seen thriving in unusually harsh reef settings and these are cause for some optimism about the future of coral reefs. Here we document for the first time a diverse assemblage of 225 species of hard corals occurring in the intertidal zone of the Bonaparte Archipelago, north western Australia. We compare the environmental conditions at our study site (tidal regime, SST and level of turbidity) with those experienced at four other more typical tropical reef locations with similar levels of diversity. Physical extremes in the Bonaparte Archipelago include tidal oscillations of up to 8 m, long subaerial exposure times (>3.5 hrs), prolonged exposure to high SST and fluctuating turbidity levels. We conclude the timing of low tide in the coolest parts of the day ameliorates the severity of subaerial exposure, and the combination of strong currents and a naturally high sediment regime helps to offset light and heat stress. The low level of anthropogenic impact and proximity to the Indo-west Pacific centre of diversity are likely to further promote resistance and resilience in this community. This assemblage provides an indication of what corals may have existed in other nearshore locations in the past prior to widespread coastal development, eutrophication, coral predator and disease outbreaks and coral bleaching events. Our results call for a re-evaluation of what conditions are optimal for coral survival, and the Bonaparte intertidal community presents an ideal model system for exploring how species resilience is conferred in the absence of confounding factors such as pollution
    corecore