35 research outputs found

    The Dual Impact of HIV-1 Infection and Aging on Naïve CD4+ T-Cells: Additive and Distinct Patterns of Impairment

    Get PDF
    HIV-1-infected adults over the age of 50 years progress to AIDS more rapidly than adults in their twenties or thirties. In addition, HIV-1-infected individuals receiving antiretroviral therapy (ART) present with clinical diseases, such as various cancers and liver disease, more commonly seen in older uninfected adults. These observations suggest that HIV-1 infection in older persons can have detrimental immunological effects that are not completely reversed by ART. As naïve T-cells are critically important in responses to neoantigens, we first analyzed two subsets (CD45RA+CD31+ and CD45RA+CD31-) within the naïve CD4+ T-cell compartment in young (20–32 years old) and older (39–58 years old), ART-naïve, HIV-1 seropositive individuals within 1–3 years of infection and in age-matched seronegative controls. HIV-1 infection in the young cohort was associated with lower absolute numbers of, and shorter telomere lengths within, both CD45RA+CD31+CD4+ and CD45RA+CD31-CD4+ T-cell subsets in comparison to age-matched seronegative controls, changes that resembled seronegative individuals who were decades older. Longitudinal analysis provided evidence of thymic emigration and reconstitution of CD45RA+CD31+CD4+ T-cells two years post-ART, but minimal reconstitution of the CD45RA+CD31-CD4+ subset, which could impair de novo immune responses. For both ART-naïve and ART-treated HIV-1-infected adults, a renewable pool of thymic emigrants is necessary to maintain CD4+ T-cell homeostasis. Overall, these results offer a partial explanation both for the faster disease progression of older adults and the observation that viral responders to ART present with clinical diseases associated with older adults

    Regulatory T Cell Expansion and Immune Activation during Untreated HIV Type 1 Infection Are Associated with Disease Progression

    No full text
    Regulatory T cells (Tregs) may play an important role in the immunopathology of chronic HIV-1 infection due to their potent suppressive activity of both T cell activation and effector function. To investigate the correlation between Tregs and immune activation during untreated chronic HIV-1 infection, we conducted a nested case–control study within the Multicenter AIDS Cohort Study (MACS). Twenty HIV-1-infected fast progressors (FP) and 40 slow progressors (SP) were included in our study using risk-set sampling. Nine age-matched HIV-1-uninfected men (UI) were also included. Cryopreserved peripheral blood mononuclear cells (PMBCs) were tested using flow cytometry analyses. We identified Tregs as Foxp3+CD25+CD4+ T cells and assessed the activation of CD4+ and CD8+ T cells by the expression of CD38, HLADR, or both markers simultaneously. There is a relative expansion of Tregs during HIV-1 infection, which is associated with disease progression. The increased CD38 expression on both CD4+ and CD8+ T cells expressed as either percentage or median fluorescence intensity (MFI) and the elevated proportion of CD8+ T cells that is HLADR+CD38+ were all associated with rapid HIV-1 progression. Counter to the assumed role of Tregs as the suppressors of activation, the expansion of Tregs was positively correlated with CD4+ T cell activation among HIV-1-infected fast progressors. The high level of Tregs associated with rapid HIV progression may suggest a detrimental role of these cells in the immune control of HIV-1 infection

    Acceleration of age-associated methylation patterns in HIV-1-infected adults.

    No full text
    Patients with treated HIV-1-infection experience earlier occurrence of aging-associated diseases, raising speculation that HIV-1-infection, or antiretroviral treatment, may accelerate aging. We recently described an age-related co-methylation module comprised of hundreds of CpGs; however, it is unknown whether aging and HIV-1-infection exert negative health effects through similar, or disparate, mechanisms. We investigated whether HIV-1-infection would induce age-associated methylation changes. We evaluated DNA methylation levels at >450,000 CpG sites in peripheral blood mononuclear cells (PBMC) of young (20-35) and older (36-56) adults in two separate groups of participants. Each age group for each data set consisted of 12 HIV-1-infected and 12 age-matched HIV-1-uninfected samples for a total of 96 samples. The effects of age and HIV-1 infection on methylation at each CpG revealed a strong correlation of 0.49, p<1 x 10(-200) and 0.47, p<1 x 10(-200). Weighted gene correlation network analysis (WGCNA) identified 17 co-methylation modules; module 3 (ME3) was significantly correlated with age (cor=0.70) and HIV-1 status (cor=0.31). Older HIV-1+ individuals had a greater number of hypermethylated CpGs across ME3 (p=0.015). In a multivariate model, ME3 was significantly associated with age and HIV status (Data set 1: βage=0.007088, p=2.08 x 10(-9); βHIV=0.099574, p=0.0011; Data set 2: βage=0.008762, p=1.27 x 10(-5); βHIV=0.128649, p=0.0001). Using this model, we estimate that HIV-1 infection accelerates age-related methylation by approximately 13.7 years in data set 1 and 14.7 years in data set 2. The genes related to CpGs in ME3 are enriched for polycomb group target genes known to be involved in cell renewal and aging. The overlap between ME3 and an aging methylation module found in solid tissues is also highly significant (Fisher-exact p=5.6 x 10(-6), odds ratio=1.91). These data demonstrate that HIV-1 infection is associated with methylation patterns that are similar to age-associated patterns and suggest that general aging and HIV-1 related aging work through some common cellular and molecular mechanisms. These results are an important first step for finding potential therapeutic targets and novel clinical approaches to mitigate the detrimental effects of both HIV-1-infection and aging

    Distinct aging profiles of CD8<sup>+</sup> T cells in blood versus gastrointestinal mucosal compartments

    No full text
    <div><p>A hallmark of human immunosenescence is the accumulation of late-differentiated memory CD8<sup>+</sup> T cells with features of replicative senescence, such as inability to proliferate, absence of CD28 expression, shortened telomeres, loss of telomerase activity, enhanced activation, and increased secretion of inflammatory cytokines. Importantly, oligoclonal expansions of these cells are associated with increased morbidity and mortality risk in elderly humans. Currently, most information on the adaptive immune system is derived from studies using peripheral blood, which contains approximately only 2% of total body lymphocytes. However, most lymphocytes reside in tissues. It is not clear how representative blood changes are of the total immune status. This is especially relevant with regard to the human gastrointestinal tract (GALT), a major reservoir of total body lymphocytes (approximately 60%) and an anatomical region of high antigenic exposure. To assess how peripheral blood T cells relate to those in other locations, we compare CD8<sup>+</sup> T cells from peripheral blood and the GALT, specifically rectosigmoid colon, in young/middle age, healthy donors, focusing on phenotypic and functional alterations previously linked to senescence in peripheral blood. Overall, our results indicate that gut CD8<sup>+</sup> T cells show profiles suggestive of greater differentiation and activation than those in peripheral blood. Specifically, compared to blood from the same individual, the gut contains significantly greater proportions of CD8<sup>+</sup> T cells that are CD45RA<sup>-</sup> (memory), CD28<sup>-</sup>, CD45RA<sup>-</sup>CD28<sup>+</sup> (early memory), CD45RA<sup>-</sup>CD28<sup>-</sup> (late memory), CD25<sup>-</sup>, HLA-DR<sup>+</sup>CD38<sup>+</sup> (activated) and Ki-67<sup>+</sup> (proliferating); <i>ex vivo</i> CD3<sup>+</sup> telomerase activity levels are greater in the gut as well. However, gut CD8<sup>+</sup> T cells may not necessarily be more senescent, since they expressed significantly lower levels of CD57 and PD-1 on CD45RO<sup>+</sup> memory cells, and had <i>in vitro</i> proliferative dynamics similar to that of blood cells. Compartment-specific age-effects in this cohort were evident as well. Blood cells showed a significant increase with age in proportion of HLA-DR<sup>+</sup>38<sup>+</sup>, Ki-67<sup>+</sup> and CD25<sup>+</sup> CD8<sup>+</sup> T cells; and an increase in total CD3<sup>+</sup> <i>ex-vivo</i> telomerase activity that approached significance. By contrast, the only age-effect seen in the gut was a significant increase in CD45RA<sup>-</sup> (memory) and concurrent decrease in CD45RA<sup>+</sup>CD28<sup>+</sup> (naïve) CD8<sup>+</sup> T cells. Overall, these results indicate dynamics of peripheral blood immune senescence may not hold true in the gut mucosa, underscoring the importance for further study of this immunologically important tissue in evaluating the human immune system, especially in the context of chronic disease and aging.</p></div

    Parallel Human Immunodeficiency Virus Type 1-Specific CD8(+) T-Lymphocyte Responses in Blood and Mucosa during Chronic Infection

    No full text
    Gut-associated lymphoid tissue is the major reservoir of lymphocytes and human immunodeficiency virus type 1 (HIV-1) replication in vivo, yet little is known about HIV-1-specific CD8(+) T-lymphocyte (CTL) responses in this compartment. Here we assessed the breadth and magnitude of HIV-1-specific CTL in the peripheral blood and sigmoid colon mucosa of infected subjects not on antiretroviral therapy by enzyme-linked immunospot analysis with 53 peptide pools spanning all viral proteins. Comparisons of blood and mucosal CTL revealed that the magnitude of pool-specific responses is correlated within each individual (mean r(2) = 0.82 ± 0.04) and across all individuals (r(2) = 0.75; P < 0.001). Overall, 85.1% of screened peptide pools yielded concordant negative or positive results between compartments. CTL targeting was also closely related between blood and mucosa, with Nef being the most highly targeted (mean of 2.4 spot-forming cells [SFC[/10(6) CD8(+) T lymphocytes/amino acid [SFC/CD8/aa]), followed by Gag (1.5 SFC/CD8/aa). Finally, comparisons of peptide pool responses seen in both blood and mucosa (concordant positives) versus those seen only in one but not the other (discordant positives) showed that most discordant results were likely an artifact of responses being near the limit of detection. Overall, these results indicate that HIV-1-specific CTL responses in the blood mirror those seen in the mucosal compartment in natural chronic infection. For protective or immunotherapeutic vaccination, it will be important to determine whether immunity is elicited in the mucosa, which is a key site of initial infection and subsequent HIV-1 replication in vivo

    Estimating accelerated aging due to HIV-1 infection using a multivariate model.

    No full text
    <p>*Using the output above, it is estimated that HIV status accelerates age by 13.7 and 14.7 years (defined by HIV coefficient/Age coefficient)</p><p>Estimating accelerated aging due to HIV-1 infection using a multivariate model.</p

    Heat map of module-trait relationships.

    No full text
    <p>This heat map shows correlations between HIV status, chronological age, and the co-methylation module (represented by their eigenvectors) for data set one (A) and data set two (B). Included are cell subsets whose absolute numbers have an absolute correlation with module 3 that was ≥0.4. Red depicts a positive correlation, blue depicts a negative correlation, as indicated by the color band on the right.</p
    corecore