46 research outputs found

    Solution of the relativistic Dirac-Hulthen problem

    Full text link
    The one-particle three-dimensional Dirac equation with spherical symmetry is solved for the Hulthen potential. The s-wave relativistic energy spectrum and two-component spinor wavefunctions are obtained analytically. Conforming to the standard feature of the relativistic problem, the solution space splits into two distinct subspaces depending on the sign of a fundamental parameter in the problem. Unique and interesting properties of the energy spectrum are pointed out and illustrated graphically for several values of the physical parameters. The square integrable two-component wavefunctions are written in terms of the Jacobi polynomials. The nonrelativistic limit reproduces the well-known nonrelativistic energy spectrum and results in Schrodinger equation with a "generalized" three-parameter Hulthen potential, which is the sum of the original Hulthen potential and its square.Comment: 13 pages, 3 color figure

    Any ll-state solutions of the Hulth\'en potential by the asymptotic iteration method

    Full text link
    In this article, we present the analytical solution of the radial Schr\"{o}dinger equation for the Hulth\'{e}n potential within the framework of the asymptotic iteration method by using an approximation to the centrifugal potential for any ll states. We obtain the energy eigenvalues and the corresponding eigenfunctions for different screening parameters. The wave functions are physical and energy eigenvalues are in good agreement with the results obtained by other methods for different δ\delta values. In order to demonstrate this, the results of the asymptotic iteration method are compared with the results of the supersymmetry, the numerical integration, the variational and the shifted 1/N expansion methods.Comment: 14 pages and 1 figur

    Entanglement Perturbation Theory for Antiferromagnetic Heisenberg Spin Chains

    Full text link
    A recently developed numerical method, entanglement perturbation theory (EPT), is used to study the antiferromagnetic Heisenberg spin chains with z-axis anisotropy λ\lambda and magnetic field B. To demonstrate the accuracy, we first apply EPT to the isotropic spin-1/2 antiferromagnetic Heisenberg model, and find that EPT successfully reproduces the exact Bethe Ansatz results for the ground state energy, the local magnetization, and the spin correlation functions (Bethe ansatz result is available for the first 7 lattice separations). In particular, EPT confirms for the first time the asymptotic behavior of the spin correlation functions predicted by the conformal field theory, which realizes only for lattice separations larger than 1000. Next, turning on the z-axis anisotropy and the magnetic field, the 2-spin and 4-spin correlation functions are calculated, and the results are compared with those obtained by Bosonization and density matrix renormalization group methods. Finally, for the spin-1 antiferromagnetic Heisenberg model, the ground state phase diagram in λ\lambda space is determined with help of the Roomany-Wyld RG finite-size-scaling. The results are in good agreement with those obtained by the level-spectroscopy method.Comment: 12 pages, 14 figure

    Tomonaga-Luttinger parameters for quantum wires

    Full text link
    The low-energy properties of a homogeneous one-dimensional electron system are completely specified by two Tomonaga-Luttinger parameters KρK_{\rho} and vσv_{\sigma}. In this paper we discuss microscopic estimates of the values of these parameters in semiconductor quantum wires that exploit their relationship to thermodynamic properties. Motivated by the recognized similarity between correlations in the ground state of a one-dimensional electron liquid and correlations in a Wigner crystal, we evaluate these thermodynamic quantities in a self-consistent Hartree-Fock approximation. According to our calculations, the Hartree-Fock approximation ground state is a Wigner crystal at all electron densities and has antiferromagnetic order that gradually evolves from spin-density-wave to localized in character as the density is lowered. Our results for KρK_{\rho} are in good agreement with weak-coupling perturbative estimates KρpertK_{\rho}^{pert} at high densities, but deviate strongly at low densities, especially when the electron-electron interaction is screened at long distances. Kρpertn1/2K_{\rho}^{pert}\sim n^{1/2} vanishes at small carrier density nn whereas we conjecture that Kρ1/2K_{\rho}\to 1/2 when n0n\to 0, implying that KρK_{\rho} should pass through a minimum at an intermediate density. Observation of such a non-monotonic dependence on particle density would allow to measure the range of the microscopic interaction. In the spin sector we find that the spin velocity decreases with increasing interaction strength or decreasing nn. Strong correlation effects make it difficult to obtain fully consistent estimates of vσv_{\sigma} from Hartree-Fock calculations. We conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit n0n\to 0 where V0V_0 is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include

    On the Incommensurate Phase of Pure and Doped Spin-Peierls System CuGeO_3

    Full text link
    Phases and phase transitions in pure and doped spin-Peierls system CuGeO_3 are considered on the basis of a Landau-theory. In particular we discuss the critical behaviour, the soliton width and the low temperature specific heat of the incommensurate phase. We show, that dilution leads always to the destruction of long range order in this phase, which is replaced by an algebraic decay of correlations if the disorder is weak.Comment: 4 pages revtex, no figure

    Entanglement in Many-Body Systems

    Get PDF
    The recent interest in aspects common to quantum information and condensed matter has prompted a prosperous activity at the border of these disciplines that were far distant until few years ago. Numerous interesting questions have been addressed so far. Here we review an important part of this field, the properties of the entanglement in many-body systems. We discuss the zero and finite temperature properties of entanglement in interacting spin, fermionic and bosonic model systems. Both bipartite and multipartite entanglement will be considered. At equilibrium we emphasize on how entanglement is connected to the phase diagram of the underlying model. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium we discuss how to generate and manipulate entangled states by means of many-body Hamiltonians.Comment: 61 pages, 29 figure

    A lake as a microcosm: reflections on developments in aquatic ecology

    Get PDF
    In the present study, we aim at relating Forbes' remarkable paper on "The lake as a microcosm", published 125 years ago, to the present status of knowledge in our own research group. Hence, we relate the observations Forbes made to our own microcosm, Lake Krankesjon in southern Sweden, that has been intensively studied by several research groups for more than three decades. Specifically, we focus on the question: Have we made any significant progress or did Forbes and colleagues blaze the trail through the unknown wilderness and we are mainly paving that intellectual road? We conclude that lakes are more isolated than many other biomes, but have, indeed, many extensions, for example, input from the catchment, fishing and fish migration. We also conclude that irrespective of whether lakes should be viewed as microcosms or not, the paper by Forbes has been exceptionally influential and still is, especially since it touches upon almost all aspects of the lake ecosystem, from individual behaviour to food web interactions and environmental issues. Therefore, there is no doubt that even if 125 years have passed, Forbes' paper still is a source of inspiration and deserves to be read. Hence, although aquatic ecology has made considerable progress over the latest century, Forbes might be viewed as one of the major pioneers and visionary scientists of limnology

    Evidence from d+Au measurements for final-state suppression of high pTp_T hadrons in Au+Au collisions at RHIC

    Full text link
    We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high pTp_T) in minimum bias and central d+Au collisions at sNN\sqrt{s_{NN}}=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high pTp_T previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.Comment: Final journal version. Data tables for figures may be downloaded from the STAR home page: http://www.star.bnl.gov --> Publications --> Access to STAR published dat

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic
    corecore