4 research outputs found

    Bright continuously-tunable VUV source for ultrafast spectroscopy

    Full text link
    Ultrafast electron dynamics drive phenomena such as photochemical reactions, catalysis, and light harvesting. To capture such dynamics in real-time, femtosecond to attosecond light sources are extensively used. However, an exact match between the excitation photon energy and a characteristic resonance is crucial. High-harmonic generation sources are exceptional in terms of pulse duration but limited in spectral tunability in the VUV range. Here, we present a monochromatic femtosecond source continuously tunable around 21 eV photon energy utilizing the second harmonic of an OPCPA laser system to drive high-harmonic generation. The unique tunability of the source is verified in an experiment probing the interatomic Coulombic decay in doped He nanodroplets across the He absorption bands. Moreover, we achieved intensities sufficient for driving non-linear processes using a tight focusing of the VUV beam. We demonstrated it on the observation of collective autoionization of multiply excited pure He nanodroplets.Comment: 12 pages, 5 figures, submitted to Nat. Commu

    An experimental and theoretical characterization of the electronic structure of doubly ionised disulfur

    No full text
    Using time-of-flight multiple electron and ion coincidence techniques in combination with a helium gas discharge lamp and synchrotron radiation, the double ionisation spectrum of disulfur (S[Formula: see text]) and the subsequent fragmentation dynamics of its dication are investigated. The S[Formula: see text] sample was produced by heating mercury sulfide (HgS), whose vapour at a suitably chosen temperature consists primarily of two constituents: S[Formula: see text] and atomic Hg. A multi-particle-coincidence technique is thus particularly useful for retrieving spectra of S[Formula: see text] from ionisation of the mixed vapour. The results obtained are compared with detailed calculations of the electronic structure and potential energy curves of S[Formula: see text] which are also presented. These computations are carried out using configuration interaction methodology. The experimental results are interpreted with and strongly supported by the computational results.</p

    A multipurpose end-station for atomic, molecular and optical sciences and coherent diffractive imaging at ELI beamlines

    No full text
    We report on the status of a users' end-station, MAC: a Multipurpose station for Atomic, molecular and optical sciences and Coherent diffractive imaging, designed for studies of structure and dynamics of matter in the femtosecond time-domain. MAC is located in the E1 experimental hall on the high harmonic generation (HHG) beamline of the ELI Beamlines facility. The extreme ultraviolet beam from the HHG beamline can be used at the MAC end-station together with a synchronized pump beam (which will cover the NIR/Vis/UV or THz range) for time-resolved experiments on different samples. Sample delivery systems at the MAC end-station include a molecular beam, a source for pure or doped clusters, ultrathin cylindrical or flat liquid jets, and focused beams of substrate-free nanoparticles produced by an electrospray or a gas dynamic virtual nozzle combined with an aerodynamic lens stack. We further present the available detectors: electron/ion time-of-flight and velocity map imaging spectrometers and an X-ray camera, and discuss future upgrades: a magnetic bottle electron spectrometer, production of doped nanodroplets and the planned developments of beam capabilities at the MAC end-station
    corecore