91 research outputs found
Mixing Paradigms for More Comprehensible Models
Petri nets efficiently model both data- and control-flow. Control-flow is either modeled explicitly as flow of a specific kind of data, or implicit based on the data-flow. Explicit modeling of control-flow is useful for well-known and highly structured processes, but may make modeling of abstract features of models, or processes which are highly dynamic, overly complex. Declarative modeling, such as is supported by Declare and DCR graphs, focus on control-flow, but does not specify it explicitly; instead specifications come in the form of constraints on the order or appearance of tasks. In this paper we propose a combination of the two, using colored Petri nets instead of plain Petri nets to provide full data support. The combined approach makes it possible to add a focus on data to declarative languages, and to remove focus from the explicit control-flow from Petri nets for dynamic or abstract processes. In addition to enriching both procedural processes in the form of Petri nets and declarative processes, we also support a flow from modeling only abstract data- and control-flow of a model towards a more explicit control-flow model if so desired. We define our combined approach, and provide considerations necessary for enactment. Our approach has been implemented in CPN Tools 4
Modulation of aggression in male mice: influence of group size and cage size
Aggression in group-housed male mice is known to be influenced by both cage size and group size. However, the interdependency of these two parameters has not been studied yet. In this study, the level of aggression in groups of three, five, or eight male BALB/c mice housed in cages with a floor size of either 80 or 125 cm2/animal was estimated weekly after cage cleaning for a period of 14 weeks. Furthermore, urine corticosterone levels, food and water intake, body weight, and number of wounds were measured weekly. At the end of the experiment, tyrosine hydroxylase (TH) activity, testosterone levels, and weight of spleen, thymus, testes, and seminal vesicles were determined. Results indicate a moderate increase of intermale aggression in larger cages when compared to the smaller cages. Aggression in groups of eight animals was considerably higher than in groups of three animals. The increase of agonistic behavior was observed both in dominant and subordinate animals. Physiological parameters indicate differences in stress levels between dominant and subordinate animals. It is concluded that aggressive behavior in group-housed male BALB/c mice is best prevented by housing the animals in small groups of three to five animals, while decreasing floor size per animal may be used as a temporary solution to decrease high levels of aggression in an existing social group.
Towards a greater dialogue on disability between Muslims and Christians
Attitudes to disability and disabled people by Muslims – focusing on attitudes in the Middle East and North Africa - and Christians – focusing on the West (here taken to mean Europe, North America and Australasia) - were examined through a grounded theory literature search, with the study being divided into three phases of reading and analysis. The aims of study were to develop a dialogue on disability between the two cultures, to inform an understanding of the attitudes to disability in the two cultures, and to inform cultural practice in promoting support and equality in both cultures. The study finds that Islam and Christianity have much in common and are a force for good in promoting and developing disability equality in both Muslim and Christian cultures
Recommended from our members
The effect of asymmetries on stock index return value-at-risk estimates
It is widely accepted that equity return volatility increases more following negative shocks rather than positive shocks. However, much of value-at-risk (VaR) analysis relies on the assumption that returns are normally distributed (a symmetric distribution). This article considers the effect of asymmetries on the evaluation and accuracy of VaR by comparing estimates based on various models
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks,
is an advanced tool for building quantum algorithms that has been recently
shown to constitute a universal model of quantum computation. Quantum walks is
now a solid field of research of quantum computation full of exciting open
problems for physicists, computer scientists, mathematicians and engineers.
In this paper we review theoretical advances on the foundations of both
discrete- and continuous-time quantum walks, together with the role that
randomness plays in quantum walks, the connections between the mathematical
models of coined discrete quantum walks and continuous quantum walks, the
quantumness of quantum walks, a summary of papers published on discrete quantum
walks and entanglement as well as a succinct review of experimental proposals
and realizations of discrete-time quantum walks. Furthermore, we have reviewed
several algorithms based on both discrete- and continuous-time quantum walks as
well as a most important result: the computational universality of both
continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing
Journa
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
- …