615 research outputs found
Habitat Design Optimization and Analysis
Long-duration surface missions to the Moon and Mars will require habitats for the astronauts. The materials chosen for the habitat walls play a direct role in the protection against the harsh environments found on the surface. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Advanced optimization techniques are necessary for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat design optimization tool utilizing genetic algorithms has been developed. Genetic algorithms use a "survival of the fittest" philosophy, where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multi-objective formulation of structural analysis, heat loss, radiation protection, and meteoroid protection. This paper presents the research and development of this tool
Regional distribution of the prostaglandin E2 receptor EP1 in the rat brain: accumulation in Purkinje cells of the cerebellum
Prostaglandin E2 (PGE2), is a major prostanoid produced by the activity of cyclooxygenases (COX) in response to various physiological and pathological stimuli. PGE2 exerts its effects by activating four specific E-type prostanoid receptors (EP1, EP2, EP3 and EP4). In the present study, we analyzed the expression of the PGE2 receptor EP1 (mRNA and protein) in different regions of the adult rat brain (hippocampus, hypothalamus, striatum, prefrontal cerebral cortex, parietal cortex, brain stem and cerebellum) using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting and immunohistochemical methods. On a regional basis, levels of EP1 mRNA were the highest in parietal cortex and cerebellum. At the protein level, we found a very strong expression of EP1 in cerebellum as revealed by Western blotting experiments. Furthermore, the present study provides for the first time evidence that the EP1 receptor is highly expressed in the cerebellum, where the Purkinje cells displayed a very high immunolabeling of their perikaryon and dendrites as observed in the immunohistochemical analysis. Results from the present study indicate that the EP1 prostanoid receptor is expressed in specific neuronal populations, which possibly determine the region specific response to PGE2
Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E2 production.
Inhibition of neuronal cyclooxygenase-2 (COX-2) and hence prostaglandin E2 (PGE2) synthesis by non-steroidal anti-inflammatory drugs has been suggested to protect neuronal cells in a variety of pathophysiological situations including Alzheimer's disease and ischemic stroke. Ascorbic acid (vitamin C) has also been shown to protect cerebral tissue in a variety of experimental conditions, which has been attributed to its antioxidant capacity. In the present study, we show that ascorbic acid dose-dependently inhibited interleukin-1beta (IL-1beta)-mediated PGE2 synthesis in the human neuronal cell line, SK-N-SH. Furthermore, in combination with aspirin, ascorbic acid augmented the inhibitory effect of aspirin on PGE2 synthesis. However, ascorbic acid had no synergistic effect along with other COX inhibitors (SC-58125 and indomethacin). The inhibition of IL-1beta-mediated PGE2 synthesis by ascorbic acid was not due to the inhibition of the expression of COX-2 or microsomal prostaglandin E synthase (mPGES-1). Rather, ascorbic acid dose-dependently (0.1-100 microM) produced a significant reduction in IL-1beta-mediated production of 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), a reliable indicator of free radical formation, suggesting that the effects of ascorbic acid on COX-2-mediated PGE2 biosynthesis may be the result of the maintenance of the neuronal redox status since COX activity is known to be enhanced by oxidative stress. Our results provide in vitro evidence that the neuroprotective effects of ascorbic acid may depend, at least in part, on its ability to reduce neuronal COX-2 activity and PGE2 synthesis, owing to its antioxidant properties. Further, these experiments suggest that a combination of aspirin with ascorbic acid constitutes a novel approach to render COX-2 more sensitive to inhibition by aspirin, allowing an anti-inflammatory therapy with lower doses of aspirin, thereby avoiding the side effects of the usually high dose aspirin treatment
An extremely high velocity molecular jet surrounded by an ionized cavity in the protostellar source Serpens SMM1
We report ALMA observations of a one-sided, high-velocity (80 km
s) CO() jet powered by the intermediate-mass
protostellar source Serpens SMM1-a. The highly collimated molecular jet is
flanked at the base by a wide-angle cavity; the walls of the cavity can be seen
in both 4 cm free-free emission detected by the VLA and 1.3 mm thermal dust
emission detected by ALMA. This is the first time that ionization of an outflow
cavity has been directly detected via free-free emission in a very young,
embedded Class 0 protostellar source that is still powering a molecular jet.
The cavity walls are ionized either by UV photons escaping from the accreting
protostellar source, or by the precessing molecular jet impacting the walls.
These observations suggest that ionized outflow cavities may be common in Class
0 protostellar sources, shedding further light on the radiation, outflow, and
jet environments in the youngest, most embedded forming stars.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical
Journal Letter
Trade Studies for a Manned High-Power Nuclear Electric Propulsion Vehicle
Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate vehicles must be identified through trade studies for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combines analysis codes for NEP subsystems with genetic algorithm-based optimization. Trade studies for a NEP reference mission to the asteroids were conducted to identify important trends, and to determine the effects of various technologies and subsystems on vehicle performance. It was found that the electric thruster type and thruster performance have a major impact on the achievable system performance, and that significant effort in thruster research and development is merited
ALMA observations of dust polarization and molecular line emission from the Class 0 protostellar source Serpens SMM1
We present high angular resolution dust polarization and molecular line
observations carried out with the Atacama Large Millimeter/submillimeter Array
(ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these
observations with new polarization observations from the Submillimeter Array
(SMA) and archival data from the Combined Array for Research in Millimeter-wave
Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare
the magnetic field orientations at different spatial scales. We find major
changes in the magnetic field orientation between large (~0.1 pc) scales --
where the magnetic field is oriented E-W, perpendicular to the major axis of
the dusty filament where SMM1 is embedded -- and the intermediate and small
scales probed by CARMA (~1000 AU resolution), the SMA (~350 AU resolution), and
ALMA (~140 AU resolution). The ALMA maps reveal that the redshifted lobe of the
bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of
the source; however, on the northwestern side and elsewhere in the source, low
velocity shocks may be causing the observed chaotic magnetic field pattern.
High-spatial-resolution continuum and spectral-line observations also reveal a
tight (~130 AU) protobinary system in SMM1-b, the eastern component of which is
launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and
SiO(5-4); however, that jet does not appear to be shaping the magnetic field.
These observations show that with the sensitivity and resolution of ALMA, we
can now begin to understand the role that feedback (e.g., from protostellar
outflows) plays in shaping the magnetic field in very young, star-forming
sources like SMM1.Comment: 15 pages, 6 figures, 4 tables, 1 appendix. Accepted for publication
in the Astrophysical Journal. Materials accessible in the online version of
the (open-access) ApJ article include the FITS files used to make the ALMA
image in Figure 1(d), and a full, machine-readable version of Table
Hsc70 is required for endocytosis and clathrin function in Drosophila
By screening for Drosophila mutants exhibiting aberrant bride of sevenless (Boss) staining patterns on eye imaginal disc epithelia, we have recovered a point mutation in Hsc70-4, the closest homologue to bovine clathrin uncoating ATPase. Although the mutant allele was lethal, analysis of mutant clones generated by FLP/FRT recombination demonstrated that the Sevenless-mediated internalization of Boss was blocked in mutant Hsc70-4 eye disc epithelial cells. Endocytosis of other probes was also greatly inhibited in larval Garland cells. Immunostaining and EM analysis of the mutant cells revealed disruptions in the organization of endosomal/lysosomal compartments, including a substantial reduction in the number of clathrin-coated structures in Garland cells. The Hsc70-4 mutation also interacted genetically with a dominant-negative mutant of dynamin, a gene required for the budding of clathrin-coated vesicles (CCVs). Consistent with these phenotypes, recombinant mutant Hsc70 proteins exhibited diminished clathrin uncoating activity in vitro. Together, these data provide genetic support for the long-suspected role of Hsc70 in clathrin-mediated endocytosis, at least in part by inhibiting the uncoating of CCVs
Safety of magnetic resonance imaging of patients with a new Medtronic EnRhythm MRI SureScan pacing system: clinical study design
BACKGROUND: Magnetic Resonance Imaging (MRI) of patients with implanted cardiac devices is currently considered hazardous due to potential for electromagnetic interference to the patient and pacemaker system. With approximately 60 million MRI scans performed worldwide per year, an estimated majority of pacemaker patients may develop an indication for an MRI during the lifetime of their pacemakers, suggesting that safe use of pacemakers in the MRI environment would be clinically valuable. A new pacing system (Medtronic EnRhythm MRItrade mark SureScantrade mark and CapSureFix MRItrade mark leads) has been designed and pre-clinically tested for safe use in the MRI environment. The EnRhythm MRI study is designed to confirm the safety and efficacy of this new pacing system. METHODS: The EnRhythm MRI study is a prospective, randomized controlled, unblinded clinical trial to confirm the safety and efficacy of MRI at 1.5 Tesla in patients implanted with a specifically designed pacemaker and lead system. The patients have standard indications for dual chamber pacemaker implantation. Successfully implanted patients are randomized in a 2:1 ratio to undergo MRI (MRI group) or to have no MRI scan (control group) at 9-12 weeks after pacemaker system implantation. Magnetic resonance (MR) scanning includes 14 head and lumbar scan sequences representing clinically relevant scans while maximizing the gradient slew rate up to 200 T/m/s, and/or the transmitted radiofrequency (RF) power up to SAR (specific absorption rate) levels of 2 W/kg body weight (upper limit of normal operating mode). Full interrogation of all device information and sensing and capture function are measured at device implantation, every follow-up and before and immediately after MRI in the MRI group and at the same time points in the control group. Complete pacemaker and lead evaluations are also done at one week and one month after the scan for the MRI and control group patients.The primary endpoint is safe and successful completion of the MRI scan as measured by freedom from both MRI-procedure related complications and clinically significant changes in the sensing and capture function of the leads. RESULTS: Results will be communicated after approximately 156 and 470 patients have completed 4 months of follow-up. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT00433654
Renal Cystic Disease Proteins Play Critical Roles in the Organization of the Olfactory Epithelium
It was reported that some proteins known to cause renal cystic disease (NPHP6;
BBS1, and BBS4) also localize to the olfactory epithelium (OE), and that
mutations in these proteins can cause anosmia in addition to renal cystic
disease. We demonstrate here that a number of other proteins associated with
renal cystic diseases – polycystin 1 and 2 (PC1, PC2), and Meckel-Gruber
syndrome 1 and 3 (MKS1, MKS3) – localize to the murine OE. PC1, PC2, MKS1
and MKS3 are all detected in the OE by RT-PCR. We find that MKS3 localizes
specifically to dendritic knobs of olfactory sensory neurons (OSNs), while PC1
localizes to both dendritic knobs and cilia of mature OSNs. In mice carrying
mutations in MKS1, the expression of the olfactory adenylate
cyclase (AC3) is substantially reduced. Moreover, in rats with renal cystic
disease caused by a mutation in MKS3, the laminar organization
of the OE is perturbed and there is a reduced expression of components of the
odor transduction cascade (Golf, AC3) and α-acetylated tubulin.
Furthermore, we show with electron microscopy that cilia in
MKS3 mutant animals do not manifest the proper microtubule
architecture. Both MKS1 and MKS3 mutant
animals show no obvious alterations in odor receptor expression. These data show
that multiple renal cystic proteins localize to the OE, where we speculate that
they work together to regulate aspects of the development, maintenance or
physiological activities of cilia
Analytical Derivation of a Coupled-circuit Model of a Claw-pole Alternator with Concentrated Stator Windings
A lumped-parameter coupled-circuit model of a claw-pole alternator is derived. To derive the model, analytical techniques are used to define a three-dimensional (3-D) Fourier-series representation of the airgap flux density. Included in the series expansion are the harmonics introduced by rotor saliency, concentrated stator windings, and stator slots. From the airgap flux density waveform, relatively simple closed-form expressions for the stator and rotor self- and mutual-inductances are obtained. The coupled-circuit model is implemented in the simulation of an alternator/rectifier system using a commercial state-model-based circuit analysis program. Comparisons with experimental results demonstrate the accuracy of the model in predicting both the steady-state and transient behavior of the machin
- …