41 research outputs found

    A Method for the Quantification of Nanoparticle Dispersion in Nanocomposites Based on Fractal Dimension

    Get PDF
    Dispersion quantification provides critical insight and towards understanding and improving the influence of nanoparticle dispersion on the behaviour of the nanocomposite at macro and nanoscale level. This study was precipitated by the limitations of most methods for quantifying dispersion to sufficiently handle issues regarding scalability, complexity, consistency and versatility. A quantity (D 0 ) based on the variance of the fractal dimension was used to quantify dispersion successfully. The concept was validated using real microscopy images. The approach is simple and versatile to implement

    Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation

    No full text
    Suitably functionalized dipeptides have been shown to be effective hydrogelators. The design of the hydrogelators and the mechanism by which hydrogelation occurs are both currently not well understood. Here, we have utilized the hydrolysis of glucono-delta-lactone to gluconic acid as a means of adjusting the pH in a naphthalene-alanylvaline solution allowing the specific targeting of the final pH. In addition, this method allows the assembly process to be characterized. We show that assembly begins as charge is removed from the C-terminus of the dipeptide. The removal of charge allows lateral assembly of the molecules leading to pi-pi stacking (shown by CD) and beta-sheet formation (as shown by IR and X-ray fiber diffraction). This leads to the formation of fibrous structures. Electron microscopy reveals that thin fibers form initially, with low persistence length. Lateral association then occurs to give bundles of fibers with higher persistence length. This results in the initially weak hydrogel becoming stronger with time. The final mechanical properties of the hydrogels are very similar irrespective of the amount of GdL added; rather, the time taken to achieving the final gel is determined by the GdL concentration. However, differences are observed between the networks under strain, implying that the kinetics of assembly do impart different final materials' properties. Overall, this study provides detailed understanding of the assembly process that leads to hydrogelation
    corecore