28 research outputs found

    Unparticle Self-Interactions and Their Collider Implications

    Full text link
    In unparticle physics, operators of the conformal sector have self-interactions, and these are unsuppressed for strong coupling. The 3-point interactions are completely determined by conformal symmetry, up to a constant. We do not know of any theoretical upper bounds on this constant. Imposing current experimental constraints, we find that these interactions mediate spectacular collider signals, such as pp−>U−>UU−>γγγγpp -> U -> UU -> \gamma \gamma \gamma \gamma, γγZZ\gamma \gamma ZZ, ZZZZZZZZ, γγl+l−\gamma \gamma l^+ l^-, ZZl+l−ZZ l^+ l^-, and 4l4l, with cross sections of picobarns or larger at the Large Hadron Collider. Self-interactions may therefore provide the leading discovery prospects for unparticle physics.Comment: 12 pages, 5 figures; v2: published versio

    Hidden Charged Dark Matter

    Full text link
    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact U(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ~ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV < m_X < 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches.Comment: 29 pages; v2: references added; v3: published versio

    Supernova Bounds on Weinberg's Goldstone Bosons

    Full text link
    Recently, Weinberg proposed a scenario where Goldstone bosons may be masquerading as fractional cosmic neutrinos. We calculate the energy loss rates through the emission of these Goldstone bosons in a post-collapse supernova core. Invoking the well established emissivity bound from the Supernova 1987A observations and simulations, we find that nuclear bremsstrahlung processes can notably impose a bound on the Goldstone boson coupling to the Standard Model Higgs, gg, dependent on the mass of the associated radial field, mrm_r. For mrm_r large enough compared with the temperature in the post-collapse supernova core, our bound is ∣g∣≲0.011 (mr/500 MeV)2|g| \lesssim 0.011\, (m_r / 500~{\rm MeV})^2, very competitive to that derived from collider experiments.Comment: 9 pages, 1 figur
    corecore