22 research outputs found

    Urotensin II Modulates Rapid Eye Movement Sleep Through Activation of Brainstem Cholinergic Neurons

    Get PDF
    Urotensin II (UII) is a cyclic neuropeptide with strong vasoconstrictive activity in the peripheral vasculature. UII receptor mRNA is also expressed in the CNS, in particular in cholinergic neurons located in the mesopontine tegmental area, including the pedunculopontine tegmental (PPT) and lateral dorsal tegmental nuclei. This distribution suggests that the UII system is involved in functions regulated by acetylcholine, such as the sleep-wake cycle. Here, we tested the hypothesis that UII influences cholinergic PPT neuron activity and alters rapid eye movement (REM) sleep patterns in rats. Local administration of UII into the PPT nucleus increases REM sleep without inducing changes in the cortical blood flow. Intracerebroventricular injection of UII enhances both REM sleep and wakefulness and reduces slow-wave sleep 2. Intracerebroventricular, but not local, administration of UII increases cortical blood flow. Moreover, whole-cell recordings from rat-brain slices show that UII selectively excites cholinergic PPT neurons via an inward current and membrane depolarization that were accompanied by membrane conductance decreases. This effect does not depend on action potential generation or fast synaptic transmission because it persisted in the presence of TTX and antagonists of ionotropic glutamate, GABA, and glycine receptors. Collectively, these results suggest that UII plays a role in the regulation of REM sleep independently of its cerebrovascular actions by directly activating cholinergic brainstem neurons

    Assessment of FIV-C infection of cats as a function of treatment with the protease inhibitor, TL-3

    Get PDF
    BACKGROUND: The protease inhibitor, TL-3, demonstrated broad efficacy in vitro against FIV, HIV and SIV (simian immunodeficiency virus), and exhibited very strong protective effects on early neurologic alterations in the CNS of FIV-PPR infected cats. In this study, we analyzed TL-3 efficacy using a highly pathogenic FIV-C isolate, which causes a severe acute phase immunodeficiency syndrome, with high early mortality rates. RESULTS: Twenty cats were infected with uncloned FIV-C and half were treated with TL-3 while the other half were left untreated. Two uninfected cats were used as controls. The general health and the immunological and virological status of the animals was monitored for eight weeks following infection. All infected animals became viremic independent of TL-3 treatment and seven of 20 FIV-C infected animals developed severe immunodepletive disease in conjunction with significantly (p ≤ 0.05) higher viral RNA loads as compared to asymptomatic animals. A marked and progressive increase in CD8(+ )T lymphocytes in animals surviving acute phase infection was noted, which was not evident in symptomatic animals (p ≤ 0.05). Average viral loads were lower in TL-3 treated animals and of the 6 animals requiring euthanasia, four were from the untreated cohort. At eight weeks post infection, half of the TL-3 treated animals and only one of six untreated animals had viral loads below detection limits. Analysis of protease genes in TL-3 treated animals with higher than average viral loads revealed sequence variations relative to wild type protease. In particular, one mutant, D105G, imparted 5-fold resistance against TL-3 relative to wild type protease. CONCLUSIONS: The findings indicate that the protease inhibitor, TL-3, when administered orally as a monotherapy, did not prevent viremia in cats infected with high dose FIV-C. However, the modest lowering of viral loads with TL-3 treatment, the greater survival rate in symptomatic animals of the treated cohort, and the lower average viral load in TL-3 treated animals at eight weeks post infection is indicative of a therapeutic effect of the compound on virus infection

    Characterization of Highper, an ENU-induced mouse mutant with abnormal psychostimulant and stress responses

    Get PDF
    RationaleChemical mutagenesis in the mouse is a forward genetics approach that introduces random mutations into the genome, thereby providing an opportunity to annotate gene function and characterize phenotypes that have not been previously linked to a given gene.ObjectivesWe report on the behavioral characterization of Highper, an N-ethyl-N-nitrosourea (ENU)-induced mutant mouse line.MethodsHighper and B6 control mice were assessed for locomotor activity in the open field and home cage environments. Basal and acute restraint stress-induced corticosterone levels were measured. Mice were tested for locomotor response to cocaine (5, 20, 30, and 45mg/kg), methylphenidate (30mg/kg), and ethanol (0.75, 1.25, and 1.75g/kg). The rewarding and reinforcing effects of cocaine were assessed using conditioned place preference and self-administration paradigms.ResultsHighper mice are hyperactive during behavioral tests but show normal home cage locomotor behavior. Highper mice also exhibit a twofold increase in locomotor response to cocaine, methylphenidate, and ethanol and prolonged activation of the hypothalamic–pituitary–adrenal axis in response to acute stress. Highper mice are more sensitive to the rewarding and reinforcing effects of cocaine, although place preference in Highper mice appears to be significantly influenced by the environment in which the drug is administered.ConclusionsAltogether, our findings indicate that Highper mice may provide important insights into the genetic, molecular, and biological mechanisms underlying stress and the drug reward pathway.Electronic supplementary materialThe online version of this article (doi:10.1007/s00213-012-2827-5) contains supplementary material, which is available to authorized users

    Impact of Elevated Brain IL-6 in Transgenic Mice on the Behavioral and Neurochemical Consequences of Chronic Alcohol Exposure

    No full text
    Alcohol consumption activates the neuroimmune system of the brain, a system in which brain astrocytes and microglia play dominant roles. These glial cells normally produce low levels of neuroimmune factors, which are important signaling factors and regulators of brain function. Alcohol activation of the neuroimmune system is known to dysregulate the production of neuroimmune factors, such as the cytokine IL-6, thereby changing the neuroimmune status of the brain, which could impact the actions of alcohol. The consequences of neuroimmune–alcohol interactions are not fully known. In the current studies we investigated this issue in transgenic (TG) mice with altered neuroimmune status relative to IL-6. The TG mice express elevated levels of astrocyte-produced IL-6, a condition known to occur with alcohol exposure. Standard behavioral tests of alcohol drinking and negative affect/emotionality were carried out in homozygous and heterozygous TG mice and control mice to assess the impact of neuroimmune status on the actions of chronic intermittent alcohol (ethanol) (CIE) exposure on these behaviors. The expressions of signal transduction and synaptic proteins were also assessed by Western blot to identify the impact of alcohol–neuroimmune interactions on brain neurochemistry. The results from these studies show that neuroimmune status with respect to IL-6 significantly impacts the effects of alcohol on multiple levels

    Pharmacological Targeting the REV-ERBs in Sleep/Wake Regulation.

    No full text
    The circadian clock maintains appropriate timing for a wide range of behaviors and physiological processes. Circadian behaviors such as sleep and wakefulness are intrinsically dependent on the precise oscillation of the endogenous molecular machinery that regulates the circadian clock. The identical core clock machinery regulates myriad endocrine and metabolic functions providing a link between sleep and metabolic health. The REV-ERBs (REV-ERBα and REV-ERBβ) are nuclear receptors that are key regulators of the molecular clock and have been successfully targeted using small molecule ligands. Recent studies in mice suggest that REV-ERB-specific synthetic agonists modulate metabolic activity as well as alter sleep architecture, inducing wakefulness during the light period. Therefore, these small molecules represent unique tools to extensively study REV-ERB regulation of sleep and wakefulness. In these studies, our aim was to further investigate the therapeutic potential of targeting the REV-ERBs for regulation of sleep by characterizing efficacy, and optimal dosing time of the REV-ERB agonist SR9009 using electroencephalographic (EEG) recordings. Applying different experimental paradigms in mice, our studies establish that SR9009 does not lose efficacy when administered more than once a day, nor does tolerance develop when administered once a day over a three-day dosing regimen. Moreover, through use of a time response paradigm, we determined that although there is an optimal time for administration of SR9009 in terms of maximal efficacy, there is a 12-hour window in which SR9009 elicited a response. Our studies indicate that the REV-ERBs are potential therapeutic targets for treating sleep problems as those encountered as a consequence of shift work or jet lag

    Neuropeptide S reinstates cocaine-seeking behavior and increases locomotor activity through corticotropin-releasing factor receptor 1 in mice.

    No full text
    Neuropeptide S (NPS) is a recently discovered neuropeptide that increases arousal and wakefulness while decreasing anxiety-like behavior. Here, we used a self-administration paradigm to demonstrate that intracerebroventricular infusion of NPS reinstates extinguished cocaine-seeking behavior in a dose-dependent manner in mice. The highest dose of NPS (0.45 nM) increased active lever pressing in the absence of cocaine to levels that were equivalent to those observed during self-administration. In addition, we examined the role of the corticotropin-releasing factor receptor 1 (CRF(1)) in this behavior as well as locomotor stimulation and anxiolysis. CRF(1) knock-out mice did not respond to either the locomotor stimulant or cocaine reinstatement effects of NPS, but still responded to its anxiolytic effect. The CRF(1) antagonist antalarmin also blocked the increase in active lever responding in the reinstatement model and the locomotor activating properties of NPS without affecting its anxiolytic actions. Our results suggest that NPS receptors may be an important target for drug abuse research and treatment and that CRF(1) mediates the cocaine-seeking and locomotor stimulant effects of NPS, but not its effects on anxiety-like behavior

    Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour

    Get PDF
    Synthetic drug-like molecules that directly modulate the activity of key clock proteins offer the potential to directly modulate the endogenous circadian rhythm and treat diseases associated with clock dysfunction. Here we demonstrate that synthetic ligands targeting a key component of the mammalian clock, the nuclear receptors REV-ERBα and β, regulate sleep architecture and emotional behaviour in mice. REV-ERB agonists induce wakefulness and reduce REM and slow-wave sleep. Interestingly, REV-ERB agonists also reduce anxiety-like behaviour. These data are consistent with increased anxiety-like behaviour of REV-ERBβ-null mice, in which REV-ERB agonists have no effect. These results indicate that pharmacological targeting of REV-ERB may lead to the development of novel therapeutics to treat sleep disorders and anxiety
    corecore