38 research outputs found

    Back on track – On the role of the microtubule for kinesin motility and cellular function

    Full text link
    The evolution of cytoskeletal filaments (actin- and intermediate-filaments, and the microtubules) and their associated motor- and non-motor-proteins has enabled the eukaryotic cell to achieve complex organizational and structural tasks. This ability to control cellular transport processes and structures allowed for the development of such complex cellular organelles like cilia or flagella in single-cell organisms and made possible the development and differentiation of multi-cellular organisms with highly specialized, polarized cells. Also, the faithful segregation of large amounts of genetic information during cell division relies crucially on the reorganization and control of the cytoskeleton, making the cytoskeleton a key prerequisite for the development of highly complex genomes. Therefore, it is not surprising that the eukaryotic cell continuously invests considerable resources in the establishment, maintenance, modification and rearrangement of the cytoskeletal filaments and the regulation of its interaction with accessory proteins. Here we review the literature on the interaction between microtubules and motor-proteins of the kinesin-family. Our particular interest is the role of the microtubule in the regulation of kinesin motility and cellular function. After an introduction of the kinesin–microtubule interaction we focus on two interrelated aspects: (1) the active allosteric participation of the microtubule during the interaction with kinesins in general and (2) the possible regulatory role of post-translational modifications of the microtubule in the kinesin–microtubule interaction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42588/1/10974_2005_Article_9052.pd

    Biological targets of neurotoxic pesticides analysed by alteration of developmental events in the Mediterranean sea urchin, Paracentrotus lividus.

    No full text
    Biological effects of neurotoxic insecticides widely used for agricultural purposes were studied using the early development of the Mediterranean sea urchin Paracentrotus lividus as a model. These compounds, dispersed as aerosols or powders in agricultural regions near to the coast, may affect the health of organisms in the marine environment. The biological effects of Basudin (an organophosphate compound containing 20% Diazinon), Diazinon (Dzn, a thionophosphate), Carbaryl and Pirimicarb (carbamates) on the early phases of sea urchin development were thus investigated. Morphological, biochemical, histochemical and immuno, histochemical analyses were performed both during embryo and larval development. For the morphological effects on fertilisation and first cleavages, the effective concentration of insecticides was found to be 10(-4) M, while for further stages concentrations between 10(-5) and 10(-7) M were effective; 10(-3) M of any of these insecticides totally arrested development. During embryonic development, the treatment with organophosphates slowed the rate of early mitotic cycles down, affected nuclear and cytoskeletal status as well as DNA synthesis. From the gastrulation stage onwards, the main effects were exerted on the rate of primary mesenchyme cells migration, larval size, perioral arm length, and acetylcholinesterase activity distribution, thus deregulating the cholinergic system, which modulates cell-to-cell communication mediated by the signal molecule acetylcholine

    Novel roles for GAPDH in cell death and carcinogenesis

    Get PDF
    Publicado en línea el 25 de septiembre de 2009Growing evidence points to the fact that glucose metabolism has a central role in carcinogenesis. Among the enzymes controlling this energy production pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is of particular interest. Initially identified as a glycolytic enzyme and considered as a housekeeping gene, this enzyme is actually tightly regulated and is involved in numerous cellular functions. Particularly intriguing are recent reports describing GAPDH as a regulator of cell death. However, its role in cell death is unclear; whereas some studies point toward a proapoptotic function, others describe a protective role and suggest its participation in tumor progression. In this study, we highlight recent findings and discuss potential mechanisms through which cells regulate GAPDH to fulfill its diverse functions to influence cell fate.This work was supported in part by l’Association pour la Recherche sur le Cancer, by l’Agence Nationnal de la Recherche, la Fondation de France, Plan Nacional I+D SAF2008-04974 and by grants from The U.S. National Institutes of Health. J-E.R. is a recipient of a contrat d’interface INSERM-CHU de Nice.Peer reviewe
    corecore