56 research outputs found

    Automated assessment of COVID-19 reporting and data system and chest CT severity scores in patients suspected of having COVID-19 using artificial intelligence

    Get PDF
    Background: The coronavirus disease 2019 (COVID-19) pandemic has spread across the globe with alarming speed, morbidity, and mortality. Immediate triage of patients with chest infections suspected to be caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed.Purpose: To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the COVID-19 Reporting and Data System (CO-RADS) and CT severity scoring systems.Materials and Methods: The CO-RADS AI system consists of three deep-learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19, and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who underwent a nonenhanced chest CT examination because of clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic analysis, linearly weighted kappa values, and classification accuracy.Results: A total of 105 patients (mean age, 62 years +/- 16 [standard deviation]; 61 men) and 262 patients (mean age, 64 years +/- 16; 154 men) were evaluated in the internal and external test sets, respectively. The system discriminated between patients with COVID-19 and those without COVID-19, with areas under the receiver operating characteristic curve of 0.95 (95% CI: 0.91, 0.98) and 0.88 (95% CI: 0.84, 0.93), for the internal and external test sets, respectively. Agreement with the eight human observers was moderate to substantial, with mean linearly weighted k values of 0.60 +/- 0.01 for CO-RADS scores and 0.54 +/- 0.01 for CT severity scores.Conclusion: With high diagnostic performance, the CO-RADS AI system correctly identified patients with COVID-19 using chest CT scans and assigned standardized CO-RADS and CT severity scores that demonstrated good agreement with findings from eight independent observers and generalized well to external data. (C) RSNA, 2020Cardiovascular Aspects of Radiolog

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity

    FORTY-FOUR YEARS (1955–1999) DEVOTED TO HEMOGLOBIN RESEARCH: TITUS H. J. HUISMAN (1923–1999)

    No full text

    Computer-assisted analysis of peripheral zone prostate lesions using T2-weighted and dynamic contrast enhanced T1-weighted MRI.

    No full text
    Contains fulltext : 89494.pdf (publisher's version ) (Closed access)In this study, computer-assisted analysis of prostate lesions was researched by combining information from two different magnetic resonance (MR) modalities: T2-weighted (T2-w) and dynamic contrast-enhanced (DCE) T1-w images. Two issues arise when incorporating T2-w images in a computer-aided diagnosis (CADx) system: T2-w values are position as well as sequence dependent and images can be misaligned due to patient movement during the acquisition. A method was developed that computes T2 estimates from a T2-w and proton density value and a known sequence model. A mutual information registration strategy was implemented to correct for patient movement. Global motion is modelled by an affine transformation, while local motion is described by a volume preserving non-rigid deformation based on B-splines. The additional value to the discriminating performance of a DCE T1-w-based CADx system was evaluated using bootstrapped ROC analysis. T2 estimates were successfully computed in 29 patients. T2 values were extracted and added to the CADx system from 39 malignant, 19 benign and 29 normal annotated regions. T2 values alone achieved a diagnostic accuracy of 0.85 (0.77-0.92) and showed a significantly improved discriminating performance of 0.89 (0.81-0.95), when combined with DCE T1-w features. In conclusion, the study demonstrated a simple T2 estimation method that has a diagnostic performance such that it complements a DCE T1-w-based CADx system in discriminating malignant lesions from normal and benign regions. Additionally, the T2 estimate is beneficial to visual inspection due to the removed coil profile and fixed window and level settings

    Computer Aided Lesion Diagnosis in Automated 3D Breast Ultrasound Using Coronal Spiculation

    No full text
    Item does not contain fulltextA computer-aided diagnosis (CAD) system for the classification of lesions as malignant or benign in automated 3D breast ultrasound (ABUS) images, is presented. Lesions are automatically segmented when a seed point is provided, using dynamic programming in combination with a spiral scanning technique. A novel aspect of ABUS imaging is the presence of spiculation patterns in coronal planes perpendicular to the transducer. Spiculation patterns are characteristic for malignant lesions. Therefore, we compute spiculation features and combine them with features related to echotexture, echogenicity, shape, posterior acoustic behavior and margins. Classification experiments were performed using a support vector machine (SVM) classifier and evaluation was done with leave-one-patientout cross-validation. Receiver Operator Characteristic (ROC) analysis was used to determine performance of the system on a dataset of 201 lesions. We found that spiculation was among the most discriminative features. Using all features, the area under the ROC curve (Az) was 0.93, which was significantly higher than the performance without spiculation features (Az=0.90, p=0.02). On a subset of 88 cases, classification performance of CAD (Az=0.90) was comparable to the average performance of 10 readers (Az=0.87)

    Prostate cancer: computer-aided diagnosis with multiparametric 3-T MR imaging--effect on observer performance

    No full text
    Item does not contain fulltextPURPOSE: To determine the effect of computer-aided diagnosis (CAD) on less-experienced and experienced observer performance in differentiation of benign from malignant prostate lesions at 3-T multiparametric magnetic resonance (MR) imaging. MATERIALS AND METHODS: The institutional review board waived the need for informed consent. Retrospectively, 34 patients were included who had prostate cancer and had undergone multiparametric MR imaging, including T2-weighted, diffusion-weighted, and dynamic contrast material-enhanced MR imaging prior to radical prostatectomy. Six radiologists less experienced in prostate imaging and four radiologists experienced in prostate imaging were asked to characterize different regions suspicious for cancer as benign or malignant on multiparametric MR images first without and subsequently with CAD software. The effect of CAD was analyzed by using a multiple-reader, multicase, receiver operating characteristic analysis and a linear mixed-model analysis. RESULTS: In 34 patients, 206 preannotated regions, including 67 malignant and 64 benign regions in the peripheral zone (PZ) and 19 malignant and 56 benign regions in the transition zone (TZ), were evaluated. Stand-alone CAD had an overall area under the receiver operating characteristic curve (AUC) of 0.90. For PZ and TZ lesions, the AUCs were 0.92 and 0.87, respectively. Without CAD, less-experienced observers had an overall AUC of 0.81, which significantly increased to 0.91 (P = .001) with CAD. For experienced observers, the AUC without CAD was 0.88, which increased to 0.91 (P = .17) with CAD. For PZ lesions, less-experienced observers increased their AUC from 0.86 to 0.95 (P < .001) with CAD. Experienced observers showed an increase from 0.91 to 0.93 (P = .13). For TZ lesions, less-experienced observers significantly increased their performance from 0.72 to 0.79 (P = .01) with CAD and experienced observers increased their performance from 0.81 to 0.82 (P = .42). CONCLUSION: Addition of CAD significantly improved the performance of less-experienced observers in distinguishing benign from malignant lesions; when less-experienced observers used CAD, they reached similar performance as experienced observers. The stand-alone performance of CAD was similar to performance of experienced observers

    Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness

    No full text
    Contains fulltext : 108408.pdf (publisher's version ) (Closed access)Purpose: To determine the interpatient variability of prostate peripheral zone (PZ) apparent diffusion coefficient (ADC) and its effect on the assessment of prostate cancer aggressiveness. Materials and Methods: The requirement for institutional review board approval was waived. Intra- and interpatient variation of PZ ADCs was determined by means of repeated measurements of normal ADCs at three magnetic resonance (MR) examinations in a retrospective cohort of 10 consecutive patients who had high prostate-specific antigen levels and negative findings at transrectal ultrasonographically-guided biopsy. In these patients, no signs of PZ cancer were found at all three MR imaging sessions. The effect of interpatient variation on the assessment of prostate cancer aggressiveness was examined in a second retrospective cohort of 51 patients with PZ prostate cancer. Whole-mount step-section pathologic evaluation served as reference standard for placement of regions of interest on tumors and normal PZ. Repeated-measures analysis of variance was used to determine the significance of the interpatient variations in ADCs. Linear logistic regression was used to assess whether incorporating normal PZ ADCs improves the prediction of cancer aggressiveness. Results: Analysis of variance revealed that interpatient variability (1.2-2.0 x 10(-3) mm(2)/sec) was significantly larger than measurement variability (0.068 x 10(-3) mm(2)/sec +/- 0.027 [standard deviation]) (P = .0058). Stand-alone tumor ADCs showed an area under the receiver operating characteristic curve (AUC) of 0.91 for discriminating low-grade versus high-grade tumors. Incorporating normal PZ ADC significantly improved the AUC to 0.96 (P = .0401). Conclusion: PZ ADCs show significant interpatient variation, which has a substantial effect on the prediction of prostate cancer aggressiveness. Correcting this effect results in a significant increase in diagnostic accuracy. (c) RSNA, 2012

    Assessment of Prostate Cancer Aggressiveness Using Dynamic Contrast-enhanced Magnetic Resonance Imaging at 3 T

    No full text
    BACKGROUND: A challenge in the diagnosis of prostate cancer (PCa) is the accurate assessment of aggressiveness. OBJECTIVE: To validate the performance of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate at 3 tesla (T) for the assessment of PCa aggressiveness, with prostatectomy specimens as the reference standard. DESIGN, SETTINGS, AND PARTICIPANTS: A total of 45 patients with PCa scheduled for prostatectomy were included. This study was approved by the institutional review board; the need for informed consent was waived. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Subjects underwent a clinical MRI protocol including DCE-MRI. Blinded to DCE-images, PCa was indicated on T2-weighted images based on histopathology results from prostatectomy specimens with the use of anatomical landmarks for the precise localization of the tumor. PCa was classified as low-, intermediate-, or high-grade, according to Gleason score. DCE-images were used as an overlay on T2-weighted images; mean and quartile values from semi-quantitative and pharmacokinetic model parameters were extracted per tumor region. Statistical analysis included Spearman's ρ, the Kruskal-Wallis test, and a receiver operating characteristics (ROC) analysis. RESULTS AND LIMITATIONS: Significant differences were seen for the mean and 75th percentile (p75) values of wash-in (p = 0.024 and p = 0.017, respectively), mean wash-out (p = 0.044), and p75 of transfer constant (K(trans)) (p = 0.035), all between low-grade and high-grade PCa in the peripheral zone. ROC analysis revealed the best discriminating performance between low-grade versus intermediate-grade plus high-grade PCa in the peripheral zone for p75 of wash-in, K(trans), and rate constant (Kep) (area under the curve: 0.72). Due to a limited number of tumors in the transition zone, a definitive conclusion for this region of the prostate could not be drawn. CONCLUSIONS: Quantitative parameters (K(trans) and Kep) and semi-quantitative parameters (wash-in and wash-out) derived from DCE-MRI at 3 T have the potential to assess the aggressiveness of PCa in the peripheral zone. P75 of wash-in, K(trans), and Kep offer the best possibility to discriminate low-grade from intermediate-grade plus high-grade PCa. Copyright © 2013 European Association of Urology. Published by Elsevier B.V. All rights reserved. KEYWORDS: Dynamic contrast-enhanced MRI, Pharmacokinetic modeling, Prostate cancer, Prostate cancer aggressiveness, Validation stud
    corecore