3,465 research outputs found

    The sojourn time distribution in an infinite server resequencing queue with dependent interarrival and service times

    Get PDF
    We consider an infinite server resequencing queue, where arrivals are generated by jumps of a semi-Markov process and service times depend on the jumps of this process. The stationary distribution of the sojourn time, conditioned on the state of the semi-Markov process, is obtained both for the case of hyperexponential service times and for the case of a Markovian arrival process. For the general model, an accurate approximation is derived based on a discretisation of interarrival and service times

    Fast Heuristics for Delay Management with Passenger Rerouting

    Get PDF
    Delay management models determine which connections should be maintained in case of a delayed feeder train. Recently, delay management models are developed that take into account that passengers will adjust their routes when they miss a connection. However, for large-scale real-world instances, these extended models become too large to be solved with standard integer programming techniques. We therefore develop several heuristics to tackle these larger instances. The dispatching rules that are used in practice are our first heuristic. Our second heuristic applies the classical delay management model without passenger rerouting. Finally, the third heuristic updates the parameters of the classical model iteratively. We compare the quality of these heuristic solution methods on real-life instances from Netherlands Railways. In this experimental study, we show that our iterative heuristic can solve large real-world instances within a short computation time. Furthermore, the solutions obtained by this iterative heuristic are of good quality.public transportation;daily management;passenger rerouting;railway operations

    Delay Management with Re-Routing of Passengers

    Get PDF
    The question of delay management is whether trains should wait for a delayed feeder trainor should depart on time. In classical delay management models passengers always taketheir originally planned route. In this paper, we propose a model where re-routing ofpassengers is incorporated.To describe the problem we represent it as an event-activity network similar to the oneused in classical delay management, with some additional events to incorporate originand destination of the passengers. We present an integer programming formulation ofthis problem. Furthermore, we discuss the variant in which we assume fixed costs formaintaining connections and we present a polynomial algorithm for the special case ofonly one origin-destination pair. Finally, computational experiments based on real-worlddata from Netherlands Railways show that significant improvements can be obtained bytaking the re-routing of passengers into account in the model.public transportation;OD-pairs;delay management;re-routing

    Localized states influence spin transport in epitaxial graphene

    Get PDF
    We developed a spin transport model for a diffusive channel with coupled localized states that result in an effective increase of spin precession frequencies and a reduction of spin relaxation times in the system. We apply this model to Hanle spin precession measurements obtained on monolayer epitaxial graphene on SiC(0001) (MLEG). Combined with newly performed measurements on quasi-free-standing monolayer epitaxial graphene on SiC(0001) our analysis shows that the different values for the diffusion coefficient measured in charge and spin transport measurements in MLEG and the high values for the spin relaxation time can be explained by the influence of localized states arising from the buffer layer at the interface between the graphene and the SiC surface.Comment: 6 pages, 3 figures, including supplementary materia

    A programming logic for Java bytecode programs

    Get PDF
    One significant disadvantage of interpreted bytecode languages, such as Java, is their low execution speed in comparison to compiled languages like C. The mobile nature of bytecode adds to the problem, as many checks are necessary to ensure that downloaded code from untrusted sources is rendered as safe as possible. But there do exist ways of speeding up such systems. One approach is to carry out static type checking at load time, as in the case of the Java Bytecode Verifier. This reduces the number of runtime checks that must be done and also allows certain instructions to be replaced by faster versions. Another approach is the use of a Just In Time (JIT) Compiler, which takes the bytecode and produces corresponding native code at runtime. Some JIT compilers also carry out some code optimization. There are, however, limits to the amount of optimization that can safely be done by the Verifier and JITs; some operations simply cannot be carried out safely without a certain amount of runtime checking. But what if it were possible to prove that the conditions the runtime checks guard against would never arise in a particular piece of code? In this case it might well be possible to dispense with these checks altogether, allowing optimizations not feasible at present. In addition to this, because of time constraints, current JIT compilers tend to produce acceptable code as quickly as possible, rather than producing the best code possible. By removing the burden of analysis from them it may be possible to change this. We demonstrate that it is possible to define a programming logic for bytecode programs that allows the proof of bytecode programs containing loops. The instructions available to use in the programs are currently limited, but the basis is in place to extend these. The development of this logic is non-trivial and addresses several difficult problems engendered by the unstructured nature of bytecode programs

    Isostaticity, auxetic response, surface modes, and conformal invariance in twisted kagome lattices

    Full text link
    Model lattices consisting of balls connected by central-force springs provide much of our understanding of mechanical response and phonon structure of real materials. Their stability depends critically on their coordination number zz. dd-dimensional lattices with z=2dz=2d are at the threshold of mechanical stability and are isostatic. Lattices with z<2dz<2d exhibit zero-frequency "floppy" modes that provide avenues for lattice collapse. The physics of systems as diverse as architectural structures, network glasses, randomly packed spheres, and biopolymer networks is strongly influenced by a nearby isostatic lattice. We explore elasticity and phonons of a special class of two-dimensional isostatic lattices constructed by distorting the kagome lattice. We show that the phonon structure of these lattices, characterized by vanishing bulk moduli and thus negative Poisson ratios and auxetic elasticity, depends sensitively on boundary conditions and on the nature of the kagome distortions. We construct lattices that under free boundary conditions exhibit surface floppy modes only or a combination of both surface and bulk floppy modes; and we show that bulk floppy modes present under free boundary conditions are also present under periodic boundary conditions but that surface modes are not. In the the long-wavelength limit, the elastic theory of all these lattices is a conformally invariant field theory with holographic properties, and the surface waves are Rayleigh waves. We discuss our results in relation to recent work on jammed systems. Our results highlight the importance of network architecture in determining floppy-mode structure.Comment: 12 pages, 7 figure

    Evidence for multiple structural genes for the γ chain of human fetal hemoglobin

    Get PDF
    A sequence with a specific residue at each position was proposed for the γ chain of human fetal hemoglobin by Schroeder et al. (1) after a study in which hemoglobin from a number of individual infants was used. We have now examined in part the fetal hemoglobin components of 17 additional infants and have observed that position 136 of the γ chain may be occupied not only by a glycyl residue, as previously reported, but also by an alanyl residue

    Semiflexible Filamentous Composites

    Get PDF
    Inspired by the ubiquity of composite filamentous networks in nature we investigate models of biopolymer networks that consist of interconnected floppy and stiff filaments. Numerical simulations carried out in three dimensions allow us to explore the microscopic partitioning of stresses and strains between the stiff and floppy fractions c_s and c_f, and reveal a non-trivial relationship between the mechanical behavior and the relative fraction of stiff polymer: when there are few stiff polymers, non-percolated stiff ``inclusions`` are protected from large deformations by an encompassing floppy matrix, while at higher fractions of stiff material the stiff network is independently percolated and dominates the mechanical response.Comment: Phys. Rev. Lett, to appear (4 pages, 2 figures

    The finger of God : anatomical practice in 17th century Leiden

    Get PDF
    A description of 17th century anatomical activity at the major Dutch university in a cultural context This study offers a history of the Leiden anatomical theatre in the first century of its existence; who were the scientists working there in the 17th century, the Dutch Golden Age. What was the motivation of these scholars for studying and demonstrating the human body? Was it purely medical or were their other - more philosophical - questions at stake? Besides a cultural historical account of the anatomical theatre the dissertation also offers the histories of other centres of anatomical activity in 17th century Leiden: the Collegium Medico Practicum at the Caecilia Hospital, and Leiden's surgeons guild.Museum Boerhaave, LeidenUBL - phd migration 201
    corecore