
Delay Management with Re-Routing of Passengers

Twan Dollevoet1,2∗ Dennis Huisman1,2 Marie Schmidt3

Anita Schöbel3

1 Econometric Institute and ECOPT, Erasmus University Rotterdam

P.O. Box 1738, NL-3000 DR Rotterdam, the Netherlands.

{dollevoet,huisman}@ese.eur.nl

2 Department of Logistics, Netherlands Railways

P.O. Box 2025, NL-3500 HA Utrecht, the Netherlands.

3 Institute for Numerical and Applied Mathematics, Georg-August University

Lotzestr. 16 - 18, D-37083 Göttingen, Germany.

{m.schmidt,schoebel}@math.uni-goettingen.de

Econometric Institute Report EI 2010-31

April 2010

Abstract

The question of delay management is whether trains should wait for a delayed feeder train

or should depart on time. In classical delay management models passengers always take

their originally planned route. In this paper, we propose a model where re-routing of

passengers is incorporated.

To describe the problem we represent it as an event-activity network similar to the one

used in classical delay management, with some additional events to incorporate origin

and destination of the passengers. We present an integer programming formulation of

this problem. Furthermore, we discuss the variant in which we assume fixed costs for

maintaining connections and we present a polynomial algorithm for the special case of

only one origin-destination pair. Finally, computational experiments based on real-world

data from Netherlands Railways show that significant improvements can be obtained by

taking the re-routing of passengers into account in the model.

Keywords: Public Transportation, Delay Management, Re-Routing, OD-pairs

∗Corresponding author

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6616682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction and Motivation

Passenger railway transport plays an important role in the European mobility. Especially,

during peak hours and for distances between 20 and 800 kilometers, passengers often choose

to travel by train. To ensure a high frequency and an easy to remember timetable, most

European railway companies have opted for a cyclic timetable (see Liebchen (2008) or Kroon

et al. (2009) for two recent publications on the subject). In such a timetable, each line has to

be operated in a cyclic, or periodic, pattern: the trains run, for example, every 30, 60 or 120

minutes. A weak point in such a system is that passengers often have to change trains, since

it is impossible to give a direct connection between all origin-destination pairs. To minimize

the inconvenience of changing from train A to train B, the timetable is often constructed in

such a way that train B departs shortly after train A arrives preferably with a cross-platform

connection, i.e. both trains stop at two adjacent tracks of the same platform. However, if

train A has a delay during the operations, the question is whether train B should wait or

depart. Such decisions are called delay management.

Delay management deals with (small) source delays of a railway system as they occur in the

daily operations. In case of such delays, the scheduled timetable is not feasible any more and

has to be updated to a disposition timetable. Since delays are often transferred if a connecting

train waits for a delayed feeder train such connections are often not maintained in case of

delays.

There exist various models and solution approaches for delay management. The main question

which has been treated in the literature so far is to decide which trains should wait for delayed

feeder trains and which trains better depart on time (wait-depart decisions). A first integer

programming formulation for this problem has been given in Schöbel (2001) and has been

further developed in Giovanni et al. (2008) and Schöbel (2007); see also Schöbel (2006) for

an overview about various models. The complexity of the problem has been investigated

in Gatto et al. (2005) where it turns out that the problem is NP-hard even in very special

cases. The online version of the problem has been studied in Gatto et al. (2007) and Gatto

(2007). In Berger et al. (2007), it was shown that the online version of the delay management

problem is PSPACE-hard. Further publications about delay management include a model

in the context of max-plus-algebra (de Vries et al., 1998; Goverde, 1998), a formulation as

discrete time-cost tradeoff problem (Ginkel and Schöbel, 2007) and simulation approaches

(Suhl and Mellouli, 1999; Suhl et al., 2001). Recently, also the limited capacity of the track

system has been taken into account, see Schöbel (2009) for modeling issues and Schachtebeck

and Schöbel (2010); Schachtebeck (2010) for heuristic approaches solving capacitated delay

management problems.

What has been neglected so far is the aspect of re-routing. In the available models it is assumed

that passengers take exactly the lines they planned, i.e. if they miss a connection they have to

wait a complete period of time (the cycle time) until the same connection takes place again.

2

Utrecht

Amsterdam

Amersfoort

Zwolle

Hilversum

Figure 1: A small part of the railway network in the Netherlands. A regional train runs from
Amersfoort to Hilversum and further to Amsterdam. An intercity service runs from Zwolle
to Utrecht and stops at station Amersfoort. All other trains are intercities as well.

This assumption is usually not valid in practice. Often there is an earlier connection using

another line or even changing the path of the trip. A real-world example of a situation where

re-routing passengers in case of delays is beneficial, is given next.

Consider the network in Figure 1. An intercity service runs from Zwolle to Utrecht via

Amersfoort. There are also intercities from Utrecht to Amsterdam and from Amersfoort to

Amsterdam. Finally, a regional train runs from Amersfoort via Hilversum to Amsterdam. A

large number of passengers want to travel from Zwolle to Amsterdam, and thus have a transfer

at Amersfoort. In the current timetable, the intercity to Amsterdam departs from Amersfoort

5 minutes after the intercity from Zwolle has arrived. Therefore, if the intercity from Zwolle

has a small delay, these passengers will miss the connecting intercity to Amsterdam. If the

possibility of re-routing the passengers is not taken into account, the decision to delay the

intercity from Amersfoort to Amsterdam assumes that the passengers that miss the connection

at Amersfoort have to wait for one hour for the next intercity. However, if the connection is

missed, the passengers can also stay in the delayed train and transfer in Utrecht instead. The

transfer time in Utrecht is larger than in Amersfoort. If the delay of the train in Amersfoort

is too large for the transfer in Utrecht, the passengers should better transfer to the regional

train in Amersfoort. Although the travel time of the regional train is larger than that of the

intercity, the total delay of the passengers will be higher if they wait for the next intercity

from Amersfoort to Amsterdam. This small example shows that the delay of passengers that

miss a connection is often much smaller than the cycle time of the timetable. To find optimal

wait-depart decisions, re-routing passengers should therefore be taken into account.

In this paper we will investigate how such a re-routing of passengers can be incorporated

into the delay management model. We denote the resulting model by delay management

with re-routing decisions (DMwRR). To the best of our knowledge a re-routing of passengers

has never been treated before. The contributions of our paper are as follows. Firstly, we

have developed a new model and integer programming formulation for DMwRR. Secondly,

we prove that DMwRR is NP-hard in the general case, while it is polynomially solvable if

3

only one origin-destination pair is present. And finally, our third contribution is that we show

that DMwRR can be solved for medium-size real-world instances and performs significantly

better than the existing models where re-routing is not taken into account.

The remainder of the paper is structured as follows. In Section 2 we show how the re-routing

of passengers can be modeled in the event-activity network. An integer program using event-

activity networks is formulated in Section 3. In Section 4 we present a polynomially solvable

special case of the problem. We show that a slight generalization of this case is already

NP-hard. Furthermore, we discuss another simplified variant in which we assume fixed delay

costs for each maintained changing activity. In Section 5, we report the results of several

experiments based on real-world data of Netherlands Railways, the largest passenger operator

on the Dutch railway network. Finally, we conclude the paper mentioning ideas for further

research.

2 Model

We assume that the number of passengers that want to travel from a given origin to a des-

tination at a certain time is known. For example, 200 passengers want to travel from Zwolle

to Amsterdam at 8 o’clock in the morning. We denote such an origin-destination pair by

p = {u, v, suv}, where u is the origin, v is the destination and suv is the planned starting

time of the trip. P denotes the set of all such origin-destination pairs. From now on, we will

abbreviate an origin-destination pair as an OD-pair. We use wp for the number of passengers

associated to an OD-pair p ∈ P.

Given some source delays from outside the system, the delay management problem is to de-

cide which trains should wait for delayed feeder trains and which trains should depart on

time. The goal is to find a solution which is best for the passengers. In our work we want to

minimize the sum of all delays over all OD-pairs assuming that all passengers take shortest

paths.

In order to model the delay management problem with re-routing we will make use of event-

activity networks, first introduced by Nachtigall (1998) for timetabling problems and used

for the classical delay management problems by Schöbel (2006). The event-activity network

N = (E ,A) is a directed graph, where E denotes the set of events and the set A consists of the

activities. The departure or the arrival of a train g at a station v, denoted by (g − v − Dep)

or (g − v − Arr) respectively, are the most important events in the network. To incorporate

the routes of the passengers, we introduce for every OD-pair p = {u, v, suv} ∈ P an origin

event (p − Org) and a destination event (p − Dest). Note that besides the origin and the

destination, the OD-pairs also contain the time at which passengers want to start their jour-

neys. In summary, the set of events in the network, denoted by E , consists of the departure

events of the trains, the arrival events of the trains and the origin and destination events for

4

the passengers for a given OD-pair.

E = Edep ∪ Earr ∪ Eorg ∪ Edest.

The activities are the arcs in the directed graph N . There are driving arcs, waiting arcs and

changing arcs. The driving and waiting arcs represent driving from one station to the next

and waiting at a station to let the passengers get on and off the train. The changing activities

are used by the passengers. They represent the possibility for passengers to transfer from a

train that arrives at a certain station to a train that departs at the same station some time

later. It should be noted that the driving and waiting arcs impose operational restrictions on

the vehicles. On the contrary, a changing arc does not imply that a train has to wait in case

of a delay of another train, although it would be convenient for the transferring passengers.

In fact, the decision “wait or depart on time” is the main decision we want to take during the

optimization process.

To take the re-routing of passengers into account, we additionally introduce origin and desti-

nation arcs. Let an origin event e = (p−Org) ∈ Eorg be given, where p = {u, v, suv} represents

the passengers that want to travel from station u to station v at time suv. This event e is

connected to all departure events that depart from u not earlier than the time suv. It remains

to connect the arrival events to the destination events. Consider therefore a destination event

(p − Dest) ∈ Edest, where again p = {u, v, suv}. Denote SPp as the earliest arrival time of

the passengers if there are no delays and denote np as the number of transfers needed for this

trip. SPp is clearly a lower bound on the arrival time of the passengers. To derive an upper

bound on the arrival time, note that in the worst case all np connections are missed (and no

other route is possible). Let de denote the source delay occurring at an event e ∈ Edep ∪ Earr.

As the overall delay at a node cannot exceed maxe′∈E de′ , an arrival event e should be con-

nected to (p − Dest) if e is an arrival event at station v and if the planned time πe satisfies

πe ∈ [SPp, SPp + npT + maxe′∈E de′], where T is the cycle time of the original timetable and

maxe′∈E de′ ≤ T . This concludes the description of the arcs in the event activity network.

Summarizing,

A = Adrive ∪ Await ∪ Achange ∪ Aorg ∪ Adest.

An example of an event-activity network is given in Figure 2. This event-activity network

corresponds to the railway network in Figure 1. The oval nodes represent the origin and

destination events, that are introduced to model the behavior of passengers when delays

occur. The dashed arcs depicting the origin and destination arcs are needed to take routing

of passengers into account.

For every activity a ∈ Adrive∪Await∪Achange a length La is given that represents the technically

minimal time that is needed to perform the activity. As the origin and destination activities

are not activities in the original sense and thus they are not time consuming, their lengths

5

{Zl, Asd} {Ut, Asd}

g1 − Zl − D g1 − Amf − A g1 − Amf − D g1 − Ut − A

g2 − Ut − D g2 − Asd − A {Ut, Asd}

{Amf, Asd} g3 − Amf − D g3 − Asd − A {Zl, Asd}

g4 − Amf − D g4 − Hvs − A g4 − Hvs − D g4 − Asd − A {Amf, Asd}

Figure 2: The event activity network for the situation depicted in Figure 1. The square
nodes are the departure and arrival events where “D” stands for departure and “A” stands
for arrival. The origin and destination events are represented by ovals omitting the add-ons
“Org” or ‘Dest” as this is obvious in the picture. As we only consider one possible departure
time for each origin-destination pair, we did not include the starting time in the origin and
destination nodes. The dashed arcs are the origin and destination arcs, that are introduced
to be able to state the shortest path problem for the passengers. The solid lines represent
driving, waiting and changing activities.

can be set to 0.

For every event e ∈ Earr ∪ Edep, the planned time is denoted by πe, i.e. π corresponds to the

timetable as it is planned to be operated. For an origin event e = (p − Org) ∈ Eorg with

p = {u, v, suv} we set πe = suv (which can be interpreted as the time at which a passenger of

OD-pair p arrives at his or her departure station). For destination events we have to determine

the time when the passengers reach their last station, hence πe is not known beforehand.

Given a timetable, for every OD-pair a route through the network has to be found, so that the

travel time is minimized. To this end, let P be a directed path from e1 to e2 in the network

N . We now define its length l(P).

• First, assume that e2 ∈ Edep ∪ Earr. We define l(P) = πe2
− πe1

to be the travel time or

distance between e1, e2 in N .

• We now extend this definition to nodes e2 ∈ Edest. Let pre(e2, P) be the predecessor of

e2 in path P from e1 to e2. Then we define l(P) = πpre(e2,P) − πe1
.

• We are mainly interested in the travel time for the passengers. For the special case of a

path P connecting an OD-pair p = {u, v, suv} we hence obtain l(P) = πpre(e2,P) − suv.

As we assume that passengers take the fastest paths to arrive at their destinations, we

6

set l(p) = l(P̂uvsuv) where P̂uvsuv is a fastest path from the origin event e = (p − Org)

to the destination event e = (p − Dest).

Given a set of source delays de associated to some events e ∈ Earr ∪ Edep the problem is to

decide which trains should wait for passengers to arrive from delayed trains and which should

depart without waiting. Thus we have to determine which of the connections a ∈ Achange will

be maintained and which will be removed. We denote the set of maintained connections by

Afix. For the resulting network

N (Afix) := (E ,Adrive ∪Await ∪ Afix ∪ Aorg ∪Adest)

in which the set of changing arcs has been replaced by Afix a new timetable can be constructed

using the critical path method (see Schöbel (2007)). The times for the events e ∈ Edep ∪ Earr

in this new timetable will be denoted by xe. For an OD-pair p we define tAfix
(p) = xe where

e is the predecessor of the destination event (p − Dest) on a shortest path from the origin

event (p − Org) to the destination event (p − Dest) in the network N (Afix).

In N (Afix) the travel time of an OD-pair p = {u, v, suv} is analogously defined as

lAfix
(p) = tAfix

(p) − suv.

In the delay management problem we want to minimize the sum of all delays of the OD-pairs.

The delay of an OD-pair p = {u, v, suv} is given as

lAfix
(p) − l(p) = tAfix

(p) − suv − l(p).

Summarizing, the objective of delay management with re-routing is to find a subset Afix ⊂

Achange so that we minimize:

min
Afix⊂Achange

∑

p∈P

wp · (tAfix
(p) − SPp) or, equivalently min

Afix⊂Achange

∑

p∈P

wp · tAfix
(p).

In words: we minimize the average delay or the sum of the arrival times of the passengers.

Since delay management without re-routing is NP-hard (Gatto et al., 2005), it is not surprising

that delay management with re-routing is NP-hard as well. In Section 4 we will investigate

the borderline between NP-hardness and tractability by analyzing the complexity of delay

management with re-routing for different structures of the underlying OD-data.

3 Integer Programming Formulation

In this section we will give an integer programming formulation that takes the routing de-

cisions for the passengers into account explicitly. The model is based on the classical delay

7

management model as it was introduced in Schöbel (2007).

The event activity network is a directed graph. We denote δin(e) and δout(e) for the set of

arcs into e and out of e, respectively, for every event e ∈ E .

3.1 Variables

The most important decision is which connections need to be kept alive. For each changing

activity a ∈ Achange we thus introduce a binary decision variable za, which is defined as

follows.

za =

{

1 if connection a is maintained,

0 otherwise.

The times that the arrival and departure events take place are the next set of decision variables.

For each event e ∈ Earr ∪ Edep, we define xe ∈ N as the rescheduled time that event e takes

place. The variables x = (xe) therefore define the disposition timetable. These decision

variables are the same as in the classical model.

The new aspect that we have to model are the routes that the passengers take. First note

that a route has to be determined for every origin-destination pair. Recall that P denotes

the set of all origin-destination pairs. To model the routing decisions for a given pair p ∈ P,

we introduce binary decision variables qap, which indicate whether arc a ∈ A is used in the

path that is chosen for origin-destination pair p ∈ P. Formally, the variables qap are defined

as follows.

qap =

{

1 if connection a is used by passengers in p,

0 otherwise.

Note that the arcs a = ((p − Org), e) ∈ Aorg for p ∈ P, e ∈ Edep can only be used by the

OD-pair p. Therefore, the variable qap′ for a = (p − Org, e) and p′ ∈ P is only needed if

p′ = p. A similar remark holds for qap with a = (e, p − Dest) ∈ Adest.

The arrival time for an OD-pair p now depends both on the path that is chosen, and on the

disposition timetable x. To be able to incorporate the arrival time of these passengers in a

linear model, we introduce a variable tp ∈ N, which will represent the arrival time for pair

p ∈ P.

3.2 Integer programming formulation

We first present our integer programming formulation for (DMwRR) and then discuss its

meaning.

min
∑

p∈P

wp(tp − SPp) (1)

8

such that

xe ≥ πe + de ∀e ∈ Earr ∪ Edep, (2)

xe ≥ xe′ + La ∀a = (e′, e) ∈ Adrive ∪ Await, (3)

xe ≥ xe′ + La − M1(1 − za) ∀a = (e′, e) ∈ Achange, (4)

qap ≤ za ∀p ∈ P, a ∈ Achange, (5)
∑

a∈δout(e)

qap = 1 ∀e = (p − Org) ∈ Eorg, (6)

∑

a∈δout(e)

qap =
∑

a∈δin(e)

qap ∀p ∈ P, e ∈ Earr ∪ Edep, (7)

1 =
∑

a∈δin(e)

qap ∀e = (p − Dest) ∈ Edest, (8)

tp ≥ xe − M2(1 − qap) ∀e = (p − Dest) ∈ Edest, a ∈ δin(e), (9)

za ∈ {0, 1} ∀a ∈ Achange, (10)

qap ∈ {0, 1} ∀p ∈ P, a ∈ A, (11)

xe ∈ N ∀e ∈ Earr ∪ Edep, (12)

tp ∈ N ∀p ∈ P. (13)

The objective function (1) minimizes the total delay of all passengers. Constraints (2) imply

that events cannot take place earlier than in the original timetable and that source delays are

taken into account. To make sure that delays are propagated through the network correctly,

constraints (3) transfer the delay from the start of activity a to its end. For maintained

connections, that is connections for which za = 1, constraints (4) transfer delays from the

feeder train to the connecting train. The value of M1 should be chosen large enough for these

constraints to be correct. In Schöbel (2006) it has been shown that M1 = maxe∈E de is large

enough. Constraints (2 - 4) are also present in the classical model.

Constraints (5 - 9) take the routing decisions into account. First of all, constraints (5) make

sure that changing activities can only be used if the connection is maintained. Equations (6 -

8) are the constraints of the shortest path problem for each origin-destination pair p. For every

pair, a path is selected from the origin (p−Org) ∈ Eorg to the destination (p−Dest) ∈ Edest.

The last constraint defines the arrival time for OD-pair p, where M2 is again a large number.

For the arrival event e that is selected and the driving activity a into this event, qap = 1,

forcing that tp ≥ xe for this particular arrival event. All other path variables qap are equal to

zero, therefore putting no restriction on the value of tp.

To find the minimal value of M2 for which (9) is correct, consider an arbitrary OD-pair

p ∈ P. As mentioned in Section 2, if maxe′∈E de′ ≤ T only arrival events e ∈ Earr for which

πe ≤ SPp +npT +maxe′∈E de′ should be connected to the destination event (p−Dest), where

9

np is the number of transfers for these passengers if the timetable is operated as planned.

Consider now an arbitrary arc a = (e, (p − Dest)) ∈ δin(p − Dest). For maxe′∈E de′ ≤ T it

holds that

xe ≤ πe + max
e′∈E

de′ ≤ SPp + npT + 2max
e′∈E

de′ .

Assuming that no passenger has more than two transfers, it follows that M2 = 2T+2maxe′∈E de′

is large enough. Indeed, as

xe − M2 ≤ SPp + npT + 2max
e′∈E

de′ − M2 ≤ SPp + 2T + 2max
e′∈E

de′ − M2 = SPp,

the constraint tp ≥ xe − M2(1 − qap) does not pose a restriction on tp when qap = 0.

We remark that the variables za are not needed in the above model, since constraints (4) and

(5) can be replaced by the constraints

xe ≥ xe′ + La − M(1 − qap) ∀a = (e′, e) ∈ Achange∀p ∈ P,

leading to an equivalent model. Nevertheless, we have chosen to leave these variables in the

model to show the similarity with earlier models. Furthermore, the variables za could be used

to guide the solution process.

In Section 5 we will use this formulation to analyze differences between delay management

with re-routing of passengers and the classical delay management version without re-routing.

4 Special Cases of Delay Management with Re-Routing and

their Complexities

In the previous section we gave an integer programming formulation for the general problem

(DMwRR). Now we will identify simplifications and special cases of (DMwRR) in order to

understand the border between still polynomial solvable and already NP-hard variants. The

knowledge about the reasons for the NP-hardness as well as polynomial approaches for special

cases can later serve to construct good heuristics for the general case.

In this section we will hence examine three special cases of (DMwRR). We first present a

polynomial algorithm for the case of delay management with re-routing where the demand

is given by only one OD-pair. We will then (slightly) generalize this case and allow that all

OD-pairs start at the same origin but have different destinations. It will turn out even in this

case delay management with re-routing is NP-hard. Finally, we will consider another variant

with simplified delay costs. Although this is a strong simplification of delay management with

re-routing, it will turn out to be NP-hard as well.

10

4.1 Delay management with re-routing for one single OD-pair

This subsection deals with a simplification of delay management with re-routing (DMwRR):

We assume that we are given only one OD-pair p = {u, v, suv}. To simplify the notation in

the following chapter we will identify (p − Org) with u and (p − Dest) with v, so u and v

will be regarded as events in the network. In this case the problem is solvable by a modified

version of Dijkstra’s algorithm for finding a shortest path.

Let N be a network with feasible timetable π, p = {u, v, suv} an OD-pair and D a set of

source delays. Like in the original Dijkstra’s algorithm we solve in every step the problem of

determining an optimal path for a pair of events {u, i} where u = (p−Org) is the origin node

of the OD-pair p = {u, v, suv} under consideration and i ∈ E . In order to do this formally, we

need the following slight extension of (DMwRR):

Having in mind the practical application in passenger re-routing we defined in Section 2 the

problem (DMwRR) for a network N and a set of OD-pairs P consisting of elements of the

form p = {u, v, suv} where u is the origin, v the destination and suv is the starting time. Now

we also want to deal with OD-pairs as elements of the type p∗ = {u, i, suv} where i ∈ E is an

arbitrary successor of u in N . From a mathematical point of view we can do this easily by

defining tAfix
(p∗) := xi as the (artificial) arrival time of such an OD-pair p∗ in the network

N (Afix). We hence extend the problem (DMwRR) to instances consisting of a network N

and a set of OD-pairs P of type p∗.

Let u be the origin node of the considered OD-pair. Determining an optimal path for a fixed

pair of events {u, i} can hence be seen as solving (DMwRR) for N and P = {{u, i, suv}}.

The part of Dijkstra’s algorithm that has to be modified is the calculation of the node labels

that represent the earliest possible arrival times at the nodes. In order to calculate the transfer

of delays efficiently, we define tr[e] as the train belonging to an event e ∈ Edep ∪ Earr.

According to Schöbel (2007), given a set of maintained connections Afix ⊂ Achange the minimal

arrival times considering the network N (Afix) can be calculated iteratively as

xAfix [e] = max{π[e] + de, max
i:(i,e)∈Adrive∪Await∪Afix

{xAfix [i] + L(i,e)}}

using the critical path method.

Let π̃[i] = x∅[i] for all i ∈ Earr∪Edep denote the minimal arrival times calculated by the critical

path method for the empty set of maintained connections. Set π̃[u] = π̃[v] = suv. We observe

that for every set Afix ⊂ Achange and every node e ∈ Earr ∪ Edep

xAfix [e] ≥ π̃[e] ≥ π[e] + de.

11

So we can equivalently determine the minimal arrival times for a given set Afix as

xAfix [e] = max{π̃[e], max
i:(i,e)∈Adrive∪Await∪Afix

{xAfix [i] + L(i,e)}}.

In Lemma 1 and Lemma 2 we will prove properties of the optimal set of connections Afix and

the path used by the passengers in N (Afix) for the case of one single OD-pair which will lead

to a simplification of the calculation of the minimal arrival times for some Afix, that will be

given in Lemma 3.

Lemma 1 states that in any optimal solution for p∗ = {u, e, suv} with e ∈ E only the connec-

tions on the path used from u to e have to be maintained.

Lemma 1 Let Ãfix be a set of maintained connections such that for a node e ∈ E the arrival

time for p∗ = {u, e, suv} is minimal. Let P = (EP ,AP) be a path from u to e in N (Ãfix). Then

there exists an optimal set of maintained connections AP
fix such that AP

fix = AP ∩ Achange.

Proof Obviously Ãfix ⊃ AP ∩Achange. On the other hand, if a ∈ Ãfix \ AP , no passenger on

path P uses a, so we can remove it. �

The statement of Lemma 2 is the following: There is always a path with minimal arrival time

such that the passengers use every train at most once.

Lemma 2 Let e be a node in N . For every set Afix for which there exists a path from the

origin u to e in N (Afix), there also exists a path P = (EP ,AP) from u to e that fulfills the

following condition:

If j, k ∈ EP such that xAfix [j] < xAfix [k] and tr[j] 6= tr[k], then tr[j] 6= tr[l] for all l ∈ EP with

xAfix [k] < xAfix [l].

Proof Assume that P̃ is a path from u to e in N (Afix) such that tr[l] = tr[j] 6= tr[k] and

xAfix [j] < xAfix [k] < xAfix [l] for j, l, k ∈ P̃ . Then the path from u to e that is identical to P̃

on all predecessors of j and successors of l but contains only nodes in tr[j] = tr[l] between

j and l is also contained in N (Afix). Repeating this, we can exchange P̃ piecewise until we

obtain a path P with the claimed property. �

The following lemma states that for computing the arrival time of a node of path P only the

nodes of P are relevant.

Lemma 3 For a node e, a path P from u to e in N (Achange) fulfilling the condition of

Lemma 2 and the set AP
fix[e] = Achange ∩ AP the minimal arrival time of node e can be

calculated as

xAP
fix

[e][e] = max{π̃[e], xAP
fix

[e][j] + L(j,e)}

12

for the predecessor j of e on the path P .

Proof If (j, e) ∈ Adrive∪Await, or if (j, e) ∈ AP
fix[e] and (j, e) is the first trip of the train tr[e],

then (j, e) is the only arc terminating in e in N (AP
fix[e]), due to AP

fix[e] = Achange ∩AP . Thus

xAP
fix

[e][e] =max{π̃[e], max
i:(i,e)∈Adrive∪Await∪A

P
fix

[e]
{xAP

fix
[e][i] + L(i,e)}}

=max{π̃[e], xAP
fix

[e][j] + L(j,e)}.

Now let (j, e) ∈ AP
fix[e] and (k, e) ∈ A with tr[k] = tr[e]. Due to Lemma 2 xAP

fix
[e][k] = π̃[k]

and π̃[e] ≥ π̃[k] + L(k,e) = xAP
fix

[e][k] + L(k,e). Using AP
fix[e] = Achange ∩ AP it follows that

xAP
fix

[e][e] =max{π̃[e], max
i:(i,e)∈Adrive∪Await∪A

P
fix

[e]
{xAP

fix
[e][i] + L(i,e)}}

=max{π̃[e], xAP
fix

[e][j] + L(j,e), x
AP

fix
[e][k] + L(k,e)}

=max{π̃[e], xAP
fix

[e][j] + L(j,e)}.

�

Let’s come back to our modified Dijkstra’s algorithm. We solve problem (DMwRR) for

different nodes i. In any iteration we store

• T [i]: Minimal arrival time in event i for passengers traveling from u to i with starting

time suv.

• Afix[i]: Changing activities that have to be maintained in the optimal solution of

(DMwRR) with OD-pair {u, i, suv}.

• TD[i]: Set of “forbidden trains” = trains that were used on the minimal path from u to

i, not including tr[i].

Let PERM be the set of events for which (DMwRR) has been solved and the above values

have been determined. For every e with a direct predecessor i ∈ PERM we determine the

preliminary arrival time

T̃ [e] = min
i∈PERM :(i,e)∈A,tr[e]/∈TD[i]

{π̃[e], T [i] + L(i,e)}.

Like in Dijkstra’s algorithm we fix the event ê with smallest T̃ [e].

In order to calculate Afix[ê] and TD[ê] we distinguish two cases. Let iê be the predecessor of

ê in the solution of (DMwRR) for {u, ê, suv}.

• If â = (iê, ê) is a changing activity we obtain Afix[ê] = Afix[iê] ∪ {(iê, ê)} and TD[ê] =

TD[iê] ∪ {tr[iê]}.

13

• Otherwise we simply set Afix[ê] = Afix[iê] and TD[ê] = TD[iê].

The algorithm is summarized below.

Algorithm: Modified Dijkstra for delay management with re-routing for one OD-

pair

Input: Instance of (DMwRR) with network N , feasible timetable π, delays de and one OD-

pair p = {u, v, suv}.

Step 1. Generate the timetable π̃ by the critical path method. Set π̃[u] = π̃[v] = suv.

Step 2. Set PERM = {u}, TEMP = E\{u}, T [u] = suv, T̃ [e] = ∞ for every e ∈ TEMP ,

TD[u] = ∅, Afix[u] = ∅, êold = u.

Step 3. For every e ∈ TEMP such that (êold, e) ∈ A, tr[e] /∈ TD[eold]

set T̃ [e] = min{T̃ [e],max{π̃[e], T [êold] + L(êold,e)}}.

Step 4. Choose ê ∈ argmin T̃ [e]. Set iê the corresponding predecessor of ê, PERM =

PERM ∪ {ê}, TEMP = TEMP \ {ê}, T [ê] = T̃ [ê].

Step 5. If ê = v go to step 7.

Step 6. If (iê, ê) ∈ Achange set Afix[ê] = Afix[iê] ∪ {(iê, ê)} and TD[ê] = {TD[iê] ∪ {tr[iê]}}.

Otherwise set Afix[ê] = Afix[iê] and TD[ê] = TD[iê].

Set êold = ê. Go to step 3.

Step 7. Set Afix = Afix[v] and tv = T [v].

Output: Optimal set Afix for the given instance of (DMwRR).

Theorem 1 The algorithm finds an optimal solution Afix to (DMwRR) with one OD-pair in

time O(n2) where n is the number of nodes in the network N .

Proof First we observe that adding changing activities to a set A1 does not influence the

time for events e that happen before the added activities take place.

That means for two sets A1 ⊂ A2 ⊂ Achange and an event e the following statement holds:

If

xA2(e1) ≥ xA2(e) for all (e1, e2) ∈ A2 \ A1,

it follows that

xA1[e] = xA2 [e]. (14)

14

Now we will show inductively that in every iteration of the algorithm for every node e ∈

PERM it holds that

T [e] = xAfix[e][e]

for the labels T [e] and the sets of changing activities Afix[e] calculated by the algorithm.

As T [u] = suv = x∅[u] = xAfix[u][u] the assumption holds for the origin u.

Assume that in the k-th iteration of the algorithm the assumption holds for the nodes in

PERM . Let ê be the node that is chosen in step 4 of the algorithm and iê ∈ PERM such

that (iê, ê) ∈ A and max{π̃[ê], xAfix[iê][iê] + L(iê,ê)} is minimal. Let T̃ old[ê] be the label of ê at

the beginning of step 3 and let êold be the node that was added to PERM in the (k − 1)-th

iteration. Then the new label of ê is calculated as

T̃ [ê] =

{

T̃ [êold] if tr[ê] ∈ TD[êold]

min{T̃ old[ê],max{π̃[ê], T [êold] + L(êold,ê)}} if tr[ê] /∈ TD[êold]

= min
i∈PERM :(i,ê)∈A,tr[e]/∈TD[i]

max{π̃[ê], T [i] + L(i,ê)}.

Let AP
fix = AP ∩ Achange as in Lemma 3. We note that due to the construction of Afix[i] for

a node i

Afix[i] = AP
fix[i] (15)

for the path P used by the Dijkstra algorithm as an optimal path from u to i.

Then

T [ê] = min
i∈PERM :(i,ê)∈A,tr[e]/∈TD[i]

max{π̃[ê], T [i] + L(i,ê)} (16)

= min
i∈PERM :(i,ê)∈A,tr[e]/∈TD[i]

max{π̃[ê], xAfix[i][i] + L(i,ê)} (17)

= max{π̃[ê], xAfix[iê][iê] + L(iê,ê)} (18)

= max{π̃[ê], xAP
fix

[iê][iê] + L(iê,ê)} (19)

= max{π̃[ê], xAP
fix

[ê][iê] + L(iê,ê)} (20)

= xAP
fix

[ê][ê] (21)

= xAfix[ê][ê] (22)

where we use (15) in (19) and (22). (17) holds because of the assumption T [i] = xAfix[i][i] for

all i ∈ PERM and (20) is true due to the initial observation (14).

It remains to show that the set Afix[ê] and the label T [ê] = xAfix[ê][ê] are optimal for the node

ê chosen in step 4 of the algorithm, that means that there is no A ⊂ Achange such that there

15

is a path from u to ê in N (A) and

xA[ê] < xAfix[ê][ê].

This assumption will also be proven inductively. For the origin node u setting Afix[u] = ∅

leads to T [u] = suv which is optimal.

Suppose that in the iterations 1 to k − 1 of the algorithm the choice of Afix[e] and the labels

T [e] are optimal for the regarded nodes e.

Now let ê be the node chosen in step 4 in the k-th iteration, i.e. such that T [ê] = T̃ [ê] ≤ T̃ [e]

for every e ∈ TEMP . Suppose that there is a set A ⊂ Achange such that there is a path from

u to ê in N (A) and

xA[ê] < xAfix[ê][ê]. (23)

Let PA
uê be an optimal path from u to ê in N (A), that satisfies the conditions of Lemma 2.

1. If the predecessor e0 of ê in PA
uê is in PERM , because of the assumption that the labels

T [e] and chosen sets Afix[e] are optimal for all e ∈ PERM

xA[ê] = max{π̃[ê], T [e0] + L(e0,ê)}

≥ min
i∈PERM :(i,ê)∈A,tr[ê]/∈TD[i]

max{π̃[ê], T [i] + L(i,ê)}

= T [ê] = xAfix[ê][ê].

which contradicts (23).

2. If the predecessor e0 of ê in PA
uê is in TEMP , let e1 denote the last node in PERM

on the path PA
uê (e1 exists because u ∈ PERM) and e2 ∈ TEMP its successor. So as

T [ê] = T̃ [ê] ≤ T̃ [e] for every e ∈ TEMP

xA[ê] > xA[e2]

≥ max{π̃[e2], T [e1] + L(e1,e2)}

≥ min
i∈PERM :(i,e2)∈A,tr[e2]/∈TD[i]

max{π̃[e2], T [i] + L(i,e2)}

= T̃ [e2] ≥ T̃ [ê] = T [ê] = xAfix[ê][ê]

which contradicts (23).

Now it remains to show that Afix = Afix[v] and tAfix
(p) = T [v] is an optimal solution to

(DMwRR) for the OD-pair p = {u, v, suv}. As defined in Section 2, Afix[v] is optimal if it

minimizes tAfix
(p) = xAfix [e] for the predecessor e of v on a minimal path from u to v in

the network N (Afix). Suppose that the set Afix[v] and the predecessor e calculated by the

16

algorithm are not optimal with regard to an optimal path from u to v. Let A be an optimal

set, PA
uv an optimal path in N (A) and e0 the optimal predecessor. Then

tA(p) < tAfix
(p). (24)

1. If e0 ∈ PERM , because of the assumption that the labels T [i] and chosen sets Afix[i]

are optimal for all i ∈ PERM

tA[v] = max{π̃[v], xA[e0] + L(e0,v)}

≥ min
i∈PERM :(i,v)∈A

max{π̃[v], T [i] + L(i,v)}

= min
i∈PERM :(i,v)∈A

max{suv, T [i] + L(i,v)}

= T [v]

= tAfix[v][v].

which contradicts (24).

2. If the predecessor e0 of v in PA
uv is in TEMP let e1 denote the last node in PERM on

the path PA
uv and e2 ∈ TEMP its successor. So as T [v] = T̃ [v] ≤ T̃ [e] for e ∈ TEMP

tA[v] = xA[e0] > xA[e2] = max{π̃[e2], T [e1] + L(e1,e2)} ≥ T̃ [e2] ≥ T̃ [v] = T [v] = xAfix[v][v]

which contradicts (24).

The generation of the timetable in step 1 is done in time O(n2) by the procedure given in

Schöbel (2007). Inspecting step 3, we note that for the setting of the labels T̃ , summing up

over all iterations every arc a ∈ A has to be considered at most once. As the steps 4 − 6

are done in time O(n), steps 3 − 6 can be executed in O(n2). As step 7 is also in O(n2), the

running time of the modified Dijkstra algorithm is O(n2).

�

We can use this algorithm to determine a lower bound on the optimal solution for the general

(DMwRR) problem as follows: We apply the modified Dijkstra algorithm for delay manage-

ment with re-routing with one OD-pair for every OD-pair p ∈ P and sum up over the solution

values weighted with wp. This gives us a lower bound on the solution of (DMwRR).

Lemma 4 Let (DMwRR) be given together with a set of OD-pairs P and let z∗ be its optimal

objective value.

For any OD-pair p ∈ P let fp denote the objective value of the reduced problem (DMwRR)

17

with only the OD-pair p = {u, v, suv}. Then

tp ≥ fp

is a valid inequality for our integer programming formulation for (DMwRR) for any p ∈ P.

In particular, we have
∑

p∈P

wpfp ≤ z∗.

Moreover, this bound on the objective value can be calculated in in O(|P|n2).

This bound significantly improves the time needed to solve the integer programm for (DMwRR)

as will be shown in Section 5.

4.2 Delay management with re-routing for a tree-like structure of the de-

mand

In Section 4.1 we have seen that for the case of only one OD-pair, (DMwRR) is solvable in

polynomial time and we have given a Dijkstra-type solution algorithm for this case. Dijkstra-

type algorithms can usually be generalized to trees. We hence investigate the question if the

case of multiple OD-pairs in which all passengers have the same origin and the same starting

time can still be solved by the approach of the previous section. However, this generalization

of our problem already turns out to be strongly NP-hard.

Theorem 2 Delay management with re-routing is strongly NP-hard, even if only one delay

occurs, all origin and destination nodes are connected to only one event in the network and all

OD-pairs {uk, vk, sukvk
} have the same origin uk := u and the same starting time sukvk

:= 0.

Proof This theorem will be proven by reduction to the NP-complete decision problem mini-

mum cover (see Garey and Johnson (1979)). An instance of minimum cover consists of a finite

set S = {sj : j = 1, . . . , n}, a collection C = {ci : i = 1, . . . ,m} of subsets of S and a positive

integer K ≤ |C|. The question to decide is whether there is a subset C ′ of C with |C ′| ≤ K

such that every element of S is contained in at least one element of C ′. The structure of the

minimum cover problem can be represented by a matrix M = (mij)i=1,...,m,j=1,...,n with

mij =

{

1 if sj ∈ ci

0 otherwise.

We construct an instance of the delay management problem in which S corresponds to the

OD-pairs and C to connections for which we have to decide whether they are maintained or

not. We have to cover all OD-pairs (i.e. make sure that all passengers reach their destina-

tions) with a minimal set of maintained connections since maintaining a connection causes

18

costs (represented as delays) to other passengers. Our construction is the following:

For a given instance (S,C,K) of minimum cover we transfer the matrix M to a set of stations

A = {aij : mij = 1}, that means whenever mij = 1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n there is

a station aij . There are trains tri for i = 1, . . . ,m starting all at a station a0 and running

through the existing stations aij in increasing order of j and trains trj running through the

existing stations aij in increasing order of i. The stations aij offer the possibility to change

from train tri to train trj, so if and only if mij = 1, it is possible to change from tri to trj .

There are no slack times on the driving or waiting activities of the trains tri and trj, as well

as on the changing activities between these trains, so any delay of a train tri will propagate

to all following events of the train and to the events of the trains trj if the changing activity

between these trains at station aij is maintained.

There are destinations vj for j = 1, . . . , n that are reached by train trj after the last station

aij that this train passes.

We introduce an origin u with one train starting there, going to a station a0. At station a0

there are changing activities to the departure events of the trains tri, having no slack times.

In this construction, the passengers wanting to travel from u to vj at station a0 have to choose

a train tri such that they will be able to change to the train trj and reach their destination,

that means a train tri such that aij exists.

We suppose that a delay of 1 at the arrival event of train tr0 at station a0 occurs. As there

are no slack times on the changing activities to the trains tri, if a connection to a train tri

is maintained, this train will receive a delay of 1. When passengers change to a train trj at

station aij , this delay will be transferred to the train trj, thus all passengers of the OD-pairs

{u, vj , 0} arrive at their destinations with a delay of 1.

Now we assume that there are more OD-pairs {u, v1, 0}, . . . , {u, vm, 0} that can reach their

destination via the trains tri. To this end, for every i = 1, . . . ,m we introduce two more

stations ain+1 and vi. We assume that the train tr0 after leaving a0 runs through the stations

ain+1 for all i = 1, . . . ,m. At the driving activity from a0 to a1n+1 we set the slack time to

be 1, thus when the train arrives at station a1n+1, despite of the delay of 1 occurring at the

arrival event in a0, it is not delayed any more. We allow the passengers to change from tr0

to tri at every station ain+1. So we can assume that all passengers wanting to travel from

u to vi for an i = 1, . . . ,m will take train tr0 until station ain+1 and thus will be delayed if

and only if the connection from tr0 to tri at station a0 is maintained. We will denote the

constructed event activity network by N .

In Figure 3 the station network for an instance of DMwRR constructed from an instance of

minimal cover with S = {s1, s2} and C = {{s1}, {s2}, {s1, s2}} is pictured, while you can find

the detailed event activity network N in Figure 4.

19

a11 a13 v1 v1 tr1

u u a0 a22 a23 v2 v2 tr2

a31 a32 a33 v3 v3 tr3

v1 v2

v1 v2

tr1 tr2

Figure 3: The station network for the instance of the delay management problem
with re-routing constructed from an instance of minimal with S = {s1, s2} and C =
{{s1}, {s2}, {s1, s2}}. The square nodes are the departure and arrival events. The origin
and destination events are represented by ovals. There are six trains, tr0 represented by the
thick line, tr1, tr2 and tr3 starting at station a0 and going from left to right and tr1 and tr2

going top down.

Setting the number of passengers to be wuvi = wuvj
= 1, we can now show that the instance

(S,C,K) of minimum cover has a solution if and only if there is a set Afix such that the sum

over the delays of the OD-pairs in the network N (Afix) is smaller than or equal to K̃ = n+K:

We divide Achange into two sets: the changing activities at station a0 A1
change := {(tr0 −

a0 − Arr, tri − a0 − Dep) : i = 1, . . . ,m} and all other changing activities A2
change := {(tri −

aij − Arr, trj − aij − Dep)} ∪ {(tr′ − ain+1 − Arr, tri − ain+1 − Dep)}. Now we observe that

maintaining a connection in A2
change does not yield a delay for any OD-pair. So we choose to

maintain all connections in A2
change.

For a solution C ′ of minimum cover we set Afix(C
′) := A2

change ∪ {(tr0 − a0 − Arr, tri −

a0 − Dep) : ci ∈ C ′} and vice versa for a solution Afix ⊃ A2
change we define C ′(Afix) = {ci :

(tr0 − a0 − Arr, tri − a0 − Dep) ∈ Afix}. Thus we have a bijection between subsets C ′ ⊂ C

and Afix ⊃ A2
change.

Let A ⊂ A1
change. We see that in N (A ∪ A2

change) there exists a path from u to vj if and only

if at least for one i with sj ∈ ci the connection (tr0 − a0 −Arr, tri − a0 −Dep) is maintained.

Thus a set Afix is feasible for DMwRR (that means for every OD-pair there exists a path from

origin to destination) if and only if the corresponding set C ′ is feasible for minimum cover.

Furthermore we observe that the OD-pairs {{u, vj , 0} : j = 1, . . . , n} will reach their des-

tination with a delay of 1, because there are no slack times on the paths from u to vj

for all j = 1, . . . , n. For the other OD-pairs {u, vi, 0} the delay is 1 if the connection

20

(tr0 − a0 − Arr, tri − aij − Dep) is maintained and 0 otherwise.

Thus for a pair of solutions Afix ⊃ A2
change and C ′ ⊂ C with solution values z(Afix) and z(C ′)

z(Afix) = z(C ′) + n.

That means there is a solution to the constructed instance of DMwRR with solution value

≤ K̃ if and only if there is a solution to (S,C,K) with solution value ≤ K.

So every instance of minimum cover can be transformed to an instance of DMwRR with the

claimed properties. �

21

tr0 − a0 − D

tr0 − a13 − A tr0 − a13 − D

tr1 − a0 − D tr1 − a11 − A tr1 − a11 − D tr1 − a13 − A tr1 − a13 − D tr1 − v1 − A v1

tr1 − a11 − A tr1 − a11 − D tr0 − a23 − A tr0 − a23 − D

tr2 − a0 − D tr2 − a22 − A tr2 − a22 − D tr2 − a23 − A tr2 − a23 − D tr2 − v2 − A v2

tr0 − a0 − A tr2 − a22 − A tr2 − a22 − D tr0 − a33 − A

tr0 − u − D tr3 − a0 − D tr3 − a31 − A tr3 − a31 − D tr3 − a32 − A tr3 − a32 − D tr3 − a33 − A tr3 − a33 − D tr3 − v3 − A v3

u tr1 − a31 − A tr1 − a31 − D tr2 − a32 − A tr2 − a32 − D

tr1 − v1 − A tr2 − v2 − A

v1 v2

Figure 4: The event activity network for the instance of the delay management problem with re-routing constructed from an instance
of minimum cover with S = {s1, s2} and C = {{s1}, {s2}, {s1, s2}}. The square nodes are the departure and arrival events. The
origin and destination events are represented by ovals. The dotted lines are the origin and destination arcs, the solid lines represent
driving and waiting activities, changing activities are represented by dashed lines. There are six trains, tr0 represented by the thick
line, tr1, tr2 and tr3 starting at station a0 and going from left to right and tr1 and tr2 going top down.

22

4.3 Re-routing with simplified costs

The delays that arise in delay management with re-routing for the passengers by the wait-

depart decisions for the connections can be divided into two types:

1. A connection is maintained: The waiting train and the passengers on the waiting train

are delayed.

2. A connection is not maintained: The passengers that wanted to take this connection

have to travel along another, probably longer path.

Calculating the delay of the first type by a heuristic approach motivates the following re-

routing problem with simplified costs:

Let N = {E ,A} be a directed network with edge lengths La for all a ∈ A. Let Achange ⊂ A

be a set of connections that can be maintained or removed. We assume that maintaining

a connection a ∈ Achange yields a fixed delay of da for the passengers. This delay can be

regarded as a cost for opening a connection that is added to the solution value. Let P be

a set of OD-pairs, given as a subset of E × E with demand wp for each p = {u, v} ∈ P.

The objective of this variant is to minimize the simplified costs arising as fixed delays for

maintaining connections plus the travel costs of the OD-pairs. Hence, the objective function

is

min
Afix⊂Achange

∑

p∈P

wp · DAfix
(u, v) +

∑

a∈Afix

da

where DAfix
(u, v) =

∑

a∈Puv
La with Puv being a shortest path from u to v in the network in

which all connections a ∈ Achange \ Afix are removed.

In contrast to (DMwRR), in this simplified variant we are trying to minimize shortest path

distances regarding the edge lengths La and not arrival times. The simplified delays arise as

costs or penalties, whenever a connection a ∈ Afix is maintained and do not influence other

parts of the network, while in (DMwRR) they can propagate through big parts of the network

and delay the following events.

Like in delay management with re-routing this problem can be solved in polynomial time if

there is only one OD-pair (by adding the simplified costs da divided by the demand of the

OD-pair wp for a connection a to its length La and applying Dijkstra’s algorithm). However,

by modifying the proof of Theorem 2 it can be shown that even this simplified variant is

strongly NP-hard.

Theorem 3 Re-routing with simplified costs is strongly NP-hard, even if all origin and des-

tination nodes are connected to only one event in the network and all OD-pairs {uk, vk} have

the same origin uk := u.

23

Proof Analogously to the proof of strong NP-hardness for (DMwRR) we can prove this the-

orem by constructing an equivalent re-routing with simplified costs problem for each instance

of minimum cover. For this proof we simplify the network N from the proof of Theorem 2

to a network Ñ by removing all events at the stations ain+1 and vi, the destination nodes

vi, and all related activities. The set of OD-pairs is P = {{u, vj} : j = 1, . . . ,m} with unit

demand. For the changing activities from tr0 to tri we set the simplified costs to 1, for the

ones from tri to trj to 0. Similar to the proof of Theorem 2 we observe that we can assume

the connections (tri − aij − Arr, trj − aij − Dep) to be maintained because their simplified

costs are 0. Like in that proof for a given set of C ′ of subsets of S we define

Afix(C
′) := {(tr0−a0−Arr, tri−a0−Dep) : ci ∈ C ′}∪{(tri−aij−Arr, trj−aij−Dep) : mij = 1}

and for a given subset Afix ⊃ {(tri − aij − Arr, aij − trj − Dep) : mij = 1} we set

C ′(Afix) = {ci : (tr0 − a0 − Arr, tri − a0 − Dep) ∈ Afix}.

Now a set C ′ of subsets of S and the associated subset Afix ⊂ Achange are both feasible

or infeasible and have the same objective value as can be seen analogously to the proof of

Theorem 2.

�

5 Computational Experiments

We have created four cases to evaluate the integer programming formulation given in Section 3.

We will first present the cases that we considered. Then we will discuss the solution of the

integer programs and show that the polynomial algorithm for one OD-pair can be applied to

improve the overall running times. Finally, we will demonstrate that taking re-routing into

account explicitly reduces the total delay significantly.

5.1 Cases

In all cases we consider a part of the railway network in the Netherlands during a period in the

late evening. The first case corresponds to the example described in Section 1. The stations

that are included in the first case are represented by black circles in Figure 5. We focus on

the situation where the train from Zwolle arrives in Amersfoort with a delay. Therefore, only

a short time period of 2 hours in the evening is taken into account. As described in Section 1,

three intercities and one regional train are considered. The second case considers the stations

that are indicated by a grey or black circle in Figure 5. All long distance trains are considered

for a time period of 4 hours. The third case contains all long distance trains in the Randstad,

24

The Hague

Rotterdam

Schiphol

Utrecht

Amsterdam

Amersfoort

Zwolle

Figure 5: The railway network that is considered in the numerical experiments. The western
part of the country is depicted. A circle in the picture indicates a station where long distance
trains stop. The stations where only regional trains stop are not depicted. A line indicates
that there is a direct connection between two stations. For each line, there are two or four
intercities and two regional trains per hour.

which is the Western, most populated part of the Netherlands. This case includes all stations

in Figure 5. The railway network in this area is very dense, as can be seen from the picture.

Note that in the second and third case, the regional trains are not considered. Finally, the

fourth case is an extension of the second one. It includes also the regional trains. When the

regional trains are taken into account, the number of transfer arcs grows enormously, because

much more trains depart at each station during a given time interval. In the fourth case, we

have only included the OD-pairs with high passenger figures. Note that Figure 5 shows only

a part of the railway network in the Netherlands.

The timetable and the passenger figures are obtained from Netherlands Railways. For the

first case only a delay for the train from Zwolle to Amersfoort is interesting, because otherwise

no connections are violated. This delay can take values between 0 and 30 minutes. For each

other case we have generated 100 delay scenarios. In each scenario, each arrival event has a

probability of 10% to be delayed. If a train is delayed, the size of this delay is a uniformly

distributed integer number between 1 and 15 minutes.

In Table 1, we present some information about the cases and the sizes of the resulting event-

activity networks. The second column gives the number of OD-pairs that are included. Recall

that an OD-pair p ∈ P is characterized by its origin and destination station and the start

time. If it is possible to travel from one station to another at several times, these possibilities

correspond to multiple OD-pairs. To each OD-pair p ∈ P we associate a passenger figure

wp. The third column gives the total number of passengers that are considered in each case.

The number of passengers is scaled for secrecy and does not represent the true number of

passengers that travel in the given time period. For both the number of OD-pairs and the

number of passengers, we have reported the total number and the percentage that need a

25

Size of the event-activity network Binary
Case OD-pairs Passengers Trains |Edep| |Aop| |Ach| |Aorg| |Adest| Variables

I 111 (15%) 23 (2.3%) 7 28 49 10 207 219 6585
II 283 (56%) 145 (15%) 117 184 251 870 3739 3102 324954
III 675 (48%) 341 (21%) 168 314 460 1493 9276 7201 1336245
IV 239 (4%) 190 (4%) 282 1022 1760 8068 7725 7586 2372271

Table 1: The cases investigated: For each case, the number of OD-pairs, the number of
passengers and the number of trains are presented. Furthermore, the size of the event-
activity network that models each case is given. Note that |Earr| = |Edep| and that Aop =
|Adrive ∪ Await|.

transfer. The fourth column indicates the number of trains. If a train runs from station A to

B and continues from station B to station C, and so on, these trips are counted as one train.

Finally, the last columns present the dimensions of the corresponding event-activity networks

and the number of binary variables in the resulting integer program.

Comparing Cases II and IV, we see that the number of trains is doubled, while the number

of transfer arcs in the event-activity network is ten times as large. We also observe that there

are far more departure and arrival events, as the regional trains stop more often than the long

distance trains. Regarding the passengers’ data, we see that roughly half of the OD-pairs in

Case II and Case III need a transfer, but that the percentage of passengers who transfer is

only about 20 percent. The low number of trips and passengers with a transfer in Case IV is

a consequence of only considering the OD-pairs with high passenger figures. If all OD-pairs

were considered, the percentage of trips with a transfer would be 16 and the percentage of

passenger who have to transfer would equal 12. This is in line with the global percentage: In

the Netherlands about 20 percent of the passengers transfer during their trips.

5.2 Computational results

We used CPlex 11.1 on an Intel Xeon Quad PC (3.0 GHz) with 3 GB of memory to solve the

mathematical models presented in Section 3. Table 2 reports the characteristics of the optimal

solutions for the first three cases. The fourth case could not be solved. Each entry in the table

is the average value over all delay scenarios. The second column gives the average objective

value. Then, the number of events with a delay and the number of dropped connections are

reported. The next columns give the percentage of OD-pairs and the percentage of passengers

that have a delay.

The first case can be solved within one second. To give some insight into the structure of

the solutions, we will describe the routes for passengers that want to travel from Zwolle to

Amsterdam. At Amersfoort, the intercity to Amsterdam waits at most one minute for the

delayed train from Zwolle. If the train from Zwolle arrives later, passengers should travel

26

Objective Delayed Dropped Delayed Delayed
Case Value events connections OD-pairs passengers

I 30462 2.7 1.9 11.4 % 9.0 %
II 172073 29.7 13.1 21.9 % 16.0 %
III 523978 55.4 20.2 23.8 % 21.4%

Table 2: Delay management with re-routing: For each case, the objective value and the time
to solve the integer program are given. Furthermore, the average number of delays, dropped
connections, and delayed trips and passengers are given.

tp ≥ SPp tp ≥ fp

Case Average (s) Max (s) Average (s) Max (s)

II 3.1 6.1 2.3 4.2
III 15.3 26.0 11.7 18.7

Table 3: The average and maximal running times for different lower bounds on the arrival
times tp. The running times include the time needed to obtain the bound.

via Utrecht and transfer there. However, if the connection in Utrecht cannot be made, the

passengers should transfer in Amersfoort instead and use the regional train to Amsterdam.

This reveals that the optimal routes for passengers are very sensitive to the delays of the

trains.

The second and third case can be solved within one minute. The fourth case cannot be solved.

Very early in the solution process, CPlex runs out of memory and quits, even before the

first feasible solution was found. The integer program resulting from the fourth case is too

large to be solved with CPlex. This indicates that more sophisticated models and solution

approaches are needed to solve larger cases. Developing reduction techniques to reduce the

sizes of the event-activity networks is one possible direction for future research.

The arrival times of the passengers for an OD-pair p ∈ P is bounded from below by SPp,

as passengers cannot arrive earlier than planned. As explained in Lemma 4, the polynomial

algorithm for one OD-pair p ∈ P can be used to find a better lower bound on the arrival time

tp. For the second and third case, we have evaluated the effect on the computation time of

adding the inequality

tp ≥ fp

for every p ∈ P to the integer program. As can be seen in Table 3, the average running

time for both cases is reduced by 25 percent. The maximum running times are reduced by

30 percent. We conclude that applying the polynomial algorithm to obtain better bounds on

the arrival times improves the solution process.

27

Objective Value Dropped connections

Case NW DM DMwRR NW DM DMwRR

I 31217 31817 30462 2.2 1.7 1.9
II 186988 172834 168799 19.2 13.9 13.0
III 559612 532705 515099 31.2 21.8 20.3

Table 4: Comparison of different models. Model NW implements a no-wait policy. Model
DM is the classical delay management model. Model DMwRR is our model which includes
re-routing.

5.3 The impact of passenger re-routing

For the first three cases, we have compared the performance of our model to a no-wait pol-

icy and to the classical model without re-routing from Schöbel (2007). In a no-wait policy,

all trains depart as early as possible. The timetable is then determined by the operational

constraints only. The no-wait policy is denoted by NW. The classical model assumes that

a passenger that misses a connection will have a delay of one cycle time. We denote this

model by DM. For both NW and DM, we have implemented the model only to decide which

connections to maintain. Given these wait-depart decisions, the passengers are then re-routed

to find their actual delay. In this way, a fair comparison can be made between the policies.

As we consider a time period in the late evening, some passengers miss their connection to

the last train if re-routing is not included in the optimization of the wait-depart decisions.

It is impossible for these passengers to arrive at their destination. Our model, that takes

re-routing into account during the optimization of the wait-depart decisions, finds a route

for all passengers explicitly. This ensures that all passengers can arrive at their destination,

which is a clear advantage of taking re-routing into account. It is hard to assign a specific

delay to the passengers for which no route is found. To be able to compare the delay in

the three models, we therefore excluded these passengers from our data. To do so, we first

evaluated the no-wait policy. Then we determined which passengers could not arrive at their

destination and removed them from our input. In the first case, a route could be found for all

passengers. In the second case, on average 0.17 passengers were excluded. In the third case

0.37 passengers were removed.

Table 4 reports the characteristics of the solutions for the cases without the excluded pas-

sengers. For each case, we report the average objective value and the number of missed

connections.

For the first case, even the no-wait policy performs better than the classical model. Note

that this case is specifically selected to explain why re-routing should be taken into account,

so it could be expected that the classical model without explicit re-routing does not perform

well on this case. The model with re-routing gives the best solutions. On average the delay

is reduced by 4.4 percent with respect to the classical model and by 2.4 percent with respect

28

to a no-wait policy. The model with re-routing drops slightly more connections than the

model without re-routing. This corresponds to our intuition, as the model without re-routing

overestimates the delay for a passenger that misses a connection.

For the second and third case, the no-wait policy performs worst. In the second case, taking

re-routing into account reduces the delay by 9.7 percent with respect to a no-wait policy and

by 2.3 percent in comparison to the classical delay management model. In the third case, the

reduction is 7.9 and 3.3 percent, respectively. The number of dropped connections is almost

the same for the delay management models with and without explicit re-routing. However,

it is about 30 percent less than with the no-wait policy. This shows that delaying only a few

trains can improve the performance of the railway system as a whole. When re-routing is taken

into account explicitly, slightly more connections are maintained. A possible explanation is

that if a connection is dropped in the model without re-routing, the model with re-routing

can maintain a connection to a later train by delaying that later train slightly. The classical

model will not consider this possibility.

6 Conclusion and Further Research

In this paper, we introduced a model that allows to react to delayed trains not only by wait-

depart decisions for the following trains but also by re-routing of passengers. For this purpose

we introduced the origin and destination of the passengers as events in the event-activity

network used in delay management and connected the wait-depart decisions to a shortest path

problem in the resulting network. We proved that this problem is NP-hard. Furthermore, we

developed an integer programming formulation for the delay management problem with re-

routing. This novel formulation was tested on real-world instances of Netherlands Railways.

We showed that improvements of 2-5% can be obtained by incorporating the re-routing aspect

in the model. Furthermore, our model ensures that all passengers can reach their destination.

Unfortunately, we were not able to solve very large real-world instances.

Therefore, we propose two directions of further research on delay management with re-routing.

First, further special cases of the problem should be considered. For these special cases,

faster solution procedures can be developed. For example, if the event-activity network has

a special structure, this structure can be exploited to solve the delay management problem

more efficiently. The methods to solve these easier problems can be used in heuristics to solve

large-scale delay management problems in a short amount of time. Second, decomposing

methods could be developed that split the problem in the wait-depart decisions on one hand

and the re-routing of the passengers on the other hand.

In practice, the limited capacity of the infrastructure has a large impact on the real-time

performance of a railway operator. Therefore, capacity constraints should also be integrated

in the delay management model with re-routing that we presented in this paper.

29

References

A. Berger, R. Hoffmann, U. Lorenz, and S. Stiller. Online delay management: Pspace hardness

and simulation. Technical Report ARRIVAL-TR-0097, ARRIVAL Project, 2007.

R. de Vries, B. D. Schutter, and B. D. Moor. On max-algebraic models for transportation

networks. In Proceedings of the International Workshop on Discrete Event Systems, pages

457–462, Cagliari, Italy, 1998.

M. Garey and D. Johnson. Computers and Intractability — A Guide to the Theory of NP-

Completeness. Freeman, San Francisco, 1979.

M. Gatto. On the Impact of Uncertainty on Some Optimization Problems: Combinatorial

Aspects of Delay Management and Robust Online Scheduling. PhD thesis, ETH Zürich,

2007.

M. Gatto, R. Jacob, L. Peeters, and A. Schöbel. The computational complexity of delay

management. In D. Kratsch, editor, Graph-Theoretic Concepts in Computer Science: 31st

International Workshop (WG 2005), volume 3787 of Lecture Notes in Computer Science,

2005.

M. Gatto, R. Jacob, L. Peeters, and P. Widmayer. On-line delay management on a single

train line. In Algorithmic Methods for Railway Optimization, number 4359 in Lecture Notes

in Computer Science, pages 306–320. Springer, 2007.

A. Ginkel and A. Schöbel. To wait or not to wait? The bicriteria delay management problem

in public transportation. Transportation Science, 41(4):527–538, 2007.

L. D. Giovanni, G. Heilporn, and M. Labbé. Optimization models for the single delay man-

agement problem in public transportation. European Journal of Operational Research, 189

(3):762–774, 2008.

R. Goverde. The max-plus algebra approach to railway timetable design. In Computers

in Railways VI: Proceedings of the 6th international conference on computer aided design,

manufacture and operations in the railway and other advanced mass transit systems, Lisbon,

1998, pages 339–350, 1998.

L. Kroon, D. Huisman, E. Abbink, P.-J. Fioole, M. Fischetti, G. Maróti, L. Schrijver, A. Steen-

beek, and R. Ybema. The New Dutch Timetable: The OR Revolution. Interfaces, 39:6–17,

2009.

C. Liebchen. The first optimized railway timetable in practice. Transportation Science, 42:

420–435, 2008.

30

K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Deutsches

Zentrum für Luft– und Raumfahrt, Institut für Flugführung, Braunschweig, 1998. Habili-

tationsschrift.

M. Schachtebeck. Delay Management in Public Transportation: Capacities, Robustness, and

Integration. PhD thesis, Universität Göttingen, 2010.

M. Schachtebeck and A. Schöbel. To wait or not to wait and who goes first? Delay manage-

ment with priority decisions. Transportation Science, 2010. DOI 10.1287/trsc.1100.0318.

A. Schöbel. A model for the delay management problem based on mixed-integer programming.

Electronic Notes in Theoretical Computer Science, 50(1), 2001.

A. Schöbel. Optimization in public transportation. Stop location, delay management and

tariff planning from a customer-oriented point of view. Optimization and Its Applications.

Springer, New York, 2006.

A. Schöbel. Integer programming approaches for solving the delay management problem. In

Algorithmic Methods for Railway Optimization, number 4359 in Lecture Notes in Computer

Science, pages 145–170. Springer, 2007.

A. Schöbel. Capacity constraints in delay management. Public Transport, 1(2):135–154, 2009.

L. Suhl and T. Mellouli. Requirements for, and design of, an operations control system for

railways. In Computer-Aided Transit Scheduling. Springer, 1999.

L. Suhl, T. Mellouli, C. Biederbick, and J. Goecke. Managing and preventing delays in

railway traffic by simulation and optimization. In Mathematical methods on Optimization

in Transportation Systems, pages 3–16. Kluwer, 2001.

31

