17 research outputs found
Reflectance confocal microscopy as a non-invasive imaging tool in vulvar high-grade squamous intraepithelial lesions and lichen sclerosus:A descriptive morphological study in patients and healthy volunteers
Incorrect and delayed diagnosis of vulvar high-grade squamous intraepithelial neoplasia (vHSIL) and lichen sclerosus (LS) increases malignant progression risks and negatively impacts prognosis and quality of life. There is a need to improve diagnosis and monitoring. Reflectance confocal microscopy is a non-invasive imaging tool that visualizes skin structures at cellular resolution. The objectives were to explore feasibility and patient acceptability of vulvar RCM imaging and to identify RCM characteristics that are discriminative for vulvar HSIL and LS. This was a prospective, cross-sectional, observational clinical trial in patients with vHSIL and LS compared to healthy volunteers. RCM images and vulvar tissue samples were obtained. Five (5) patients with vHSIL, 10 patients with LS and 10 healthy volunteers were enrolled. In total, 100 image series of vulvar skin were obtained, including lesional and nonlesional sites. The RCM technique was considered acceptable for application by patients and healthy controls. Healthy vulvar skin was characterized by a homogenous, normal honeycomb patterned epidermis and a clear epidermal-dermal junctions. Vulvar HSIL and LS displayed an atypical honeycomb pattern of the epidermis and lymphocytic influx with presence of melanophages. Distinct features specifically observed in LS included the presence of hyalinised vessels and sclerotic areas in the dermis. RCM is a non-invasive imaging technique that is feasible and clinically acceptable to apply on vulvar skin, both in patients with premalignant lesions and healthy controls. Recognition and validation of disease-specific characteristics could make reflectance confocal microscopy a clinical tool to non-invasively aid identification of vulvar premalignancies.</p
Dermatoscopy and Optical Coherence Tomography in Vulvar High-Grade Squamous Intraepithelial Lesions and Lichen Sclerosus:A Prospective Observational Trial
Objective This study aimed to examine potential discriminatory characteristics of dermatoscopy and dynamic optical coherence tomography (D-OCT) on vulvar high-grade squamous intraepithelial lesions (vHSIL) and lichen sclerosus (LS) compared with healthy vulvar skin. Methods A prospective observational clinical trial was performed in 10 healthy volunteers, 5 vHSIL and 10 LS patients. Noninvasive imaging measurements using dermatoscopy and D-OCT were obtained at several time points, including lesional and nonlesional vulvar skin. Morphologic features of vHSIL and LS were compared with healthy controls. Epidermal thickness and blood flow were determined using D-OCT. Patients reported tolerability of each study procedure, including reference vulvar biopsies. The main outcome measures were feasibility and tolerability of imaging modalities, dermatoscopy and OCT characteristics, OCT epidermal thickness and D-OCT dermal blood flow. Results The application of dermatoscopy and D-OCT is feasible and tolerable. In vHSIL, dermatoscopic warty structures were present. In LS, sclerotic areas and arborizing vessels were observed. Structural OCT in the vulvar area aligned with histology for hyperkeratosis and dermal-epidermal junction visualization. Currently, the OCT algorithm is unable to calculate the epidermal thickness of the uneven vulvar area. Dynamic optical coherence tomography showed statistically significant increased blood flow in LS patients (mean ± SD, 0.053 ± 0.029) to healthy controls (0.040 ± 0.012; p =.0024). Conclusions The application of dermatoscopy and D-OCT is feasible and tolerable in vHSIL and LS patients. Using dermatoscopy and D-OCT, the authors describe potential characteristics to aid differentiation of diseased from healthy vulvar skin, which could complement clinical assessments.</p
The vulvar microbiome in lichen sclerosus and high-grade intraepithelial lesions
BackgroundThe role of the vulvar microbiome in the development of (pre)malignant vulvar disease is scarcely investigated. The aim of this exploratory study was to analyze vulvar microbiome composition in lichen sclerosus (LS) and vulvar high-grade squamous intraepithelial lesions (HSIL) compared to healthy controls.MethodsWomen with vulvar lichen sclerosus (n = 10), HSIL (n = 5) and healthy controls (n = 10) were included. Swabs were collected from the vulva, vagina and anal region for microbiome characterization by metagenomic shotgun sequencing. Both lesional and non-lesional sites were examined. Biophysical assessments included trans-epidermal water loss for evaluation of the vulvar skin barrier function and vulvar and vaginal pH measurements.ResultsHealthy vulvar skin resembled vaginal, anal and skin-like microbiome composition, including the genera Prevotella, Lactobacillus, Gardnerella, Staphylococcus, Cutibacterium, and Corynebacterium. Significant differences were observed in diversity between vulvar skin of healthy controls and LS patients. Compared to the healthy vulvar skin, vulvar microbiome composition of both LS and vulvar HSIL patients was characterized by significantly higher proportions of, respectively, Papillomaviridae (p = 0.045) and Alphapapillomavirus (p = 0.002). In contrast, the Prevotella genus (p = 0.031) and Bacteroidales orders (p = 0.038) were significantly less abundant in LS, as was the Actinobacteria class (p = 0.040) in vulvar HSIL. While bacteria and viruses were most abundant, fungal and archaeal taxa were scarcely observed. Trans-epidermal water loss was higher in vulvar HSIL compared to healthy vulvar skin (p = 0.043).ConclusionThis study is the first to examine the vulvar microbiome through metagenomic shotgun sequencing in LS and HSIL patients. Diseased vulvar skin presents a distinct signature compared to healthy vulvar skin with respect to bacterial and viral fractions of the microbiome. Key findings include the presence of papillomaviruses in LS as well as in vulvar HSIL, although LS is generally considered an HPV-independent risk factor for vulvar dysplasia. This exploratory study provides clues to the etiology of vulvar premalignancies and may act as a steppingstone for expanding the knowledge on potential drivers of disease progression
The Human Vulvar Microbiome: A Systematic Review
The link between cancer and the microbiome is a fast-moving field in research. There is little knowledge on the microbiome in ((pre)malignant) conditions of the vulvar skin. This systematic review aims to provide an overview of the literature regarding the microbiome composition of the healthy vulvar skin and in (pre)malignant vulvar disease. This study was performed according to the PRISMA guidelines. A comprehensive, electronic search strategy was used to identify original research articles (updated September 2021). The inclusion criteria were articles using culture-independent methods for microbiome profiling of the vulvar region. Ten articles were included. The bacterial composition of the vulva consists of several genera including Lactobacillus, Corynebacterium, Staphylococcus and Prevotella, suggesting that the vulvar microbiome composition shows similarities with the corresponding vaginal milieu. However, the vulvar microbiome generally displayed higher diversity with commensals of cutaneous and fecal origin. This is the first systematic review that investigates the relationship between microbiome and vulvar (pre)malignant disease. There are limited data and the level of evidence is low with limitations in study size, population diversity and methodology. Nevertheless, the vulvar microbiome represents a promising field for exploring potential links for disease etiology and targets for therapy
Monitoring of Ex Vivo Cyclosporin a Activity in Healthy Volunteers Using T Cell Function Assays in Relation to Whole Blood and Cellular Pharmacokinetics
Therapeutic drug monitoring (TDM) of calcineurin inhibitors (i.e., tacrolimus and cyclosporin A) is standard of care after solid organ transplantation. Although the incidence of acute rejection has strongly decreased, there are still many patients who experience severe side effects or rejection after long-term treatment. In this healthy volunteer study we therefore aimed to identify biomarkers to move from a pharmacokinetic-based towards a pharmacodynamic-based monitoring approach for calcineurin inhibitor treatment. Healthy volunteers received a single dose of cyclosporine A (CsA) or placebo, after which whole blood samples were stimulated to measure ex vivo T cell functionality, including proliferation, cytokine production, and activation marker expression. The highest whole blood concentration of CsA was found at 2 h post-dose, which resulted in a strong inhibition of interferon gamma (IFNy) and interleukin-2 (IL-2) production and expression of CD154 and CD71 on T cells. Moreover, the in vitro effect of CsA was studied by incubation of pre-dose whole blood samples with a concentration range of CsA. The average in vitro and ex vivo CsA activity overlapped, making the in vitro dose–effect relationship an interesting method for prediction of post-dose drug effect. The clinical relevance of the results is to be explored in transplantation patients on calcineurin inhibitor treatment
Image_4_The vulvar microbiome in lichen sclerosus and high-grade intraepithelial lesions.JPEG
BackgroundThe role of the vulvar microbiome in the development of (pre)malignant vulvar disease is scarcely investigated. The aim of this exploratory study was to analyze vulvar microbiome composition in lichen sclerosus (LS) and vulvar high-grade squamous intraepithelial lesions (HSIL) compared to healthy controls.MethodsWomen with vulvar lichen sclerosus (n = 10), HSIL (n = 5) and healthy controls (n = 10) were included. Swabs were collected from the vulva, vagina and anal region for microbiome characterization by metagenomic shotgun sequencing. Both lesional and non-lesional sites were examined. Biophysical assessments included trans-epidermal water loss for evaluation of the vulvar skin barrier function and vulvar and vaginal pH measurements.ResultsHealthy vulvar skin resembled vaginal, anal and skin-like microbiome composition, including the genera Prevotella, Lactobacillus, Gardnerella, Staphylococcus, Cutibacterium, and Corynebacterium. Significant differences were observed in diversity between vulvar skin of healthy controls and LS patients. Compared to the healthy vulvar skin, vulvar microbiome composition of both LS and vulvar HSIL patients was characterized by significantly higher proportions of, respectively, Papillomaviridae (p = 0.045) and Alphapapillomavirus (p = 0.002). In contrast, the Prevotella genus (p = 0.031) and Bacteroidales orders (p = 0.038) were significantly less abundant in LS, as was the Actinobacteria class (p = 0.040) in vulvar HSIL. While bacteria and viruses were most abundant, fungal and archaeal taxa were scarcely observed. Trans-epidermal water loss was higher in vulvar HSIL compared to healthy vulvar skin (p = 0.043).ConclusionThis study is the first to examine the vulvar microbiome through metagenomic shotgun sequencing in LS and HSIL patients. Diseased vulvar skin presents a distinct signature compared to healthy vulvar skin with respect to bacterial and viral fractions of the microbiome. Key findings include the presence of papillomaviruses in LS as well as in vulvar HSIL, although LS is generally considered an HPV-independent risk factor for vulvar dysplasia. This exploratory study provides clues to the etiology of vulvar premalignancies and may act as a steppingstone for expanding the knowledge on potential drivers of disease progression.</p
Table_2_The vulvar microbiome in lichen sclerosus and high-grade intraepithelial lesions.docx
BackgroundThe role of the vulvar microbiome in the development of (pre)malignant vulvar disease is scarcely investigated. The aim of this exploratory study was to analyze vulvar microbiome composition in lichen sclerosus (LS) and vulvar high-grade squamous intraepithelial lesions (HSIL) compared to healthy controls.MethodsWomen with vulvar lichen sclerosus (n = 10), HSIL (n = 5) and healthy controls (n = 10) were included. Swabs were collected from the vulva, vagina and anal region for microbiome characterization by metagenomic shotgun sequencing. Both lesional and non-lesional sites were examined. Biophysical assessments included trans-epidermal water loss for evaluation of the vulvar skin barrier function and vulvar and vaginal pH measurements.ResultsHealthy vulvar skin resembled vaginal, anal and skin-like microbiome composition, including the genera Prevotella, Lactobacillus, Gardnerella, Staphylococcus, Cutibacterium, and Corynebacterium. Significant differences were observed in diversity between vulvar skin of healthy controls and LS patients. Compared to the healthy vulvar skin, vulvar microbiome composition of both LS and vulvar HSIL patients was characterized by significantly higher proportions of, respectively, Papillomaviridae (p = 0.045) and Alphapapillomavirus (p = 0.002). In contrast, the Prevotella genus (p = 0.031) and Bacteroidales orders (p = 0.038) were significantly less abundant in LS, as was the Actinobacteria class (p = 0.040) in vulvar HSIL. While bacteria and viruses were most abundant, fungal and archaeal taxa were scarcely observed. Trans-epidermal water loss was higher in vulvar HSIL compared to healthy vulvar skin (p = 0.043).ConclusionThis study is the first to examine the vulvar microbiome through metagenomic shotgun sequencing in LS and HSIL patients. Diseased vulvar skin presents a distinct signature compared to healthy vulvar skin with respect to bacterial and viral fractions of the microbiome. Key findings include the presence of papillomaviruses in LS as well as in vulvar HSIL, although LS is generally considered an HPV-independent risk factor for vulvar dysplasia. This exploratory study provides clues to the etiology of vulvar premalignancies and may act as a steppingstone for expanding the knowledge on potential drivers of disease progression.</p
Image_2_The vulvar microbiome in lichen sclerosus and high-grade intraepithelial lesions.JPEG
BackgroundThe role of the vulvar microbiome in the development of (pre)malignant vulvar disease is scarcely investigated. The aim of this exploratory study was to analyze vulvar microbiome composition in lichen sclerosus (LS) and vulvar high-grade squamous intraepithelial lesions (HSIL) compared to healthy controls.MethodsWomen with vulvar lichen sclerosus (n = 10), HSIL (n = 5) and healthy controls (n = 10) were included. Swabs were collected from the vulva, vagina and anal region for microbiome characterization by metagenomic shotgun sequencing. Both lesional and non-lesional sites were examined. Biophysical assessments included trans-epidermal water loss for evaluation of the vulvar skin barrier function and vulvar and vaginal pH measurements.ResultsHealthy vulvar skin resembled vaginal, anal and skin-like microbiome composition, including the genera Prevotella, Lactobacillus, Gardnerella, Staphylococcus, Cutibacterium, and Corynebacterium. Significant differences were observed in diversity between vulvar skin of healthy controls and LS patients. Compared to the healthy vulvar skin, vulvar microbiome composition of both LS and vulvar HSIL patients was characterized by significantly higher proportions of, respectively, Papillomaviridae (p = 0.045) and Alphapapillomavirus (p = 0.002). In contrast, the Prevotella genus (p = 0.031) and Bacteroidales orders (p = 0.038) were significantly less abundant in LS, as was the Actinobacteria class (p = 0.040) in vulvar HSIL. While bacteria and viruses were most abundant, fungal and archaeal taxa were scarcely observed. Trans-epidermal water loss was higher in vulvar HSIL compared to healthy vulvar skin (p = 0.043).ConclusionThis study is the first to examine the vulvar microbiome through metagenomic shotgun sequencing in LS and HSIL patients. Diseased vulvar skin presents a distinct signature compared to healthy vulvar skin with respect to bacterial and viral fractions of the microbiome. Key findings include the presence of papillomaviruses in LS as well as in vulvar HSIL, although LS is generally considered an HPV-independent risk factor for vulvar dysplasia. This exploratory study provides clues to the etiology of vulvar premalignancies and may act as a steppingstone for expanding the knowledge on potential drivers of disease progression.</p