82 research outputs found

    Improving Aerosol Simulation over South Asia for Climate and Air Quality Studies

    Get PDF
    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, the water cycle, and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions found there. However, it has been proved quite challenging to adequately represent the aerosol spatial distribution and magnitude over this critical region in global models (Pan et al. 2014), with the surface concentrations, aerosol optical depth (AOD), and absorbing AOD (AAOD) significantly underestimated, especially in October-January when the agricultural waste burning and anthropogenic aerosol dominate over dust aerosol. In this study, we aim to investigate the causes for such discrepancy in winter by conducting sets of model experiments with NASA's GEOS-5 in terms of (1) spatial resolution, (2) emission amount, and (3) meteorological fields

    Heterogeneous impact of dust on tropospheric ozone: Sensitivity to season, species, and uptake rates

    Get PDF
    Abstract. Heterogeneous chemistry on mineral dust particles causes significant reductions in important tropospheric trace gases such as O 3 , OH, and HNO 3 in dust-dominated regions such as the North African Tropical Atlantic region. We analyze the spatial and temporal modes of dust-induced heterogeneous ozone removal (∆ H O 3 ) using empirical orthogonal functions (EOFs) and principal components analysis. We use the results to attribute ozone removal to specific pathways, and to assess the sensitivity of ozone removal to uncertainties in key heterogeneous uptake rates. The first EOF mode dominates ∆ H O 3 variance (93%) and shows that dust reduces O 3 through heterogeneous reactions globally and year-around with the maximum in July. The second mode explains only 4% of ∆ H O 3 spatial variance yet accounts for most ∆ H O 3 seasonality. With best-guess uptake coefficients, indirect ozone reduction due to HNO 3 uptake exceeds direct heterogeneous uptake of O 3 . However, uncertainties in uptake rates allow the possibility that direct O 3 uptake exceeds HNO 3 -induced O 3 uptake, especially in Northern Spring. Recently published HNO 3 uptake coefficients on authentic dust range from 10 −5 < γ HNO 3 < 0.2, and imply that dust destroys 0.5-5.2% of tropospheric O 3 , respectively. Improved γ HNO 3 measurements and correct model representation of global dust composition, deliquesence, and aging are required to further reduce these order-of-magnitude uncertainties

    A Satellite-based Assessment of Trans-Pacific Transport of Pollution Aerosol

    Get PDF
    It has been well documented that pollution aerosol and dust from East Asia can transport across the North Pacific basin, reaching North America and beyond. Such intercontinental transport extends the impact of aerosols for climate change, air quality, atmospheric chemistry, and ocean biology from local and regional scales to hemispheric and global scales. Long term, measurement-based studies are necessary to adequately assess the implications of these wider impacts. A satellite-based assessment can augment intensive field campaigns by expanding temporal and spatial scales and also serve as constraints for model simulations. Satellite imagers have been providing a wealth of evidence for the intercontinental transport of aerosols for more than two decades. Quantitative assessments, however, became feasible only recently as a result of the much improved measurement accuracy and enhanced new capabilities of satellite sensors. In this study, we generated a 4-year (2002 to 2005) climatology of optical depth for pollution aerosol (defined as a mixture of aerosols from urbanlindustrial pollution and biomass burning in this study) over the North Pacific from MODerate resolution Imaging Spectro-radiometer (MODIS) observations of fine- and coarse-mode aerosol optical depths. The pollution aerosol mass loading and fluxes were then calculated using measurements of the dependence of aerosol mass extinction efficiency on relative humidity and of aerosol vertical distributions from field campaigns and available satellite observations in the region. We estimated that about 18 Tg/year pollution aerosol is exported from East Asia to the northwestern Pacific Ocean, of which about 25% reaches the west coast of North America. The pollution fluxes are largest in spring and smallest in summer. For the period we have examined the strongest export and import of pollution particulates occurred in 2003, due largely to record intense Eurasia wildfires in spring and summer. The overall uncertainty of pollution fluxes is estimated at about 80%. A reduction of uncertainty can be achieved with a better characterization of pollution aerosol through integrating emerging A-Train measurements. Simulations by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and Global Modeling Initiative (GMI) models agree quite well with the satellite-based estimates of annual and latitudeintegrated fluxes, with larger model-satellite differences in latitudinal variations of fluxes

    Multi-Decadal Change of Atmospheric Aerosols and Their Effect on Surface Radiation

    Get PDF
    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations and ground-based remote sensing and in-situ measurements have become available. We analyze the long-term global and regional aerosol optical depth and concentration trends and their relationship to the changes of emissions" and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world, including the major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions, dust and biomass burning regions that have large interannual variabilities, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions

    Aerosol Source Attributions and Source-Receptor Relationships Across the Northern Hemisphere

    Get PDF
    Emissions and long-range transport of air pollution pose major concerns on air quality and climate change. To better assess the impact of intercontinental transport of air pollution on regional and global air quality, ecosystems, and near-term climate change, the UN Task Force on Hemispheric Transport of Air Pollution (HTAP) is organizing a phase II activity (HTAP2) that includes global and regional model experiments and data analysis, focusing on ozone and aerosols. This study presents the initial results of HTAP2 global aerosol modeling experiments. We will (a) evaluate the model results with surface and aircraft measurements, (b) examine the relative contributions of regional emission and extra-regional source on surface PM concentrations and column aerosol optical depth (AOD) over several NH pollution and dust source regions and the Arctic, and (c) quantify the source-receptor relationships in the pollution regions that reflect the sensitivity of regional aerosol amount to the regional and extra-regional emission reductions

    Comparison of GFED3, QFED2 and FEER1 Biomass Burning Emissions Datasets in a Global Model

    Get PDF
    Biomass burning contributes about 40% of the global loading of carbonaceous aerosols, significantly affecting air quality and the climate system by modulating solar radiation and cloud properties. However, fire emissions are poorly constrained in models on global and regional levels. In this study, we investigate 3 global biomass burning emission datasets in NASA GEOS5, namely: (1) GFEDv3.1 (Global Fire Emissions Database version 3.1); (2) QFEDv2.4 (Quick Fire Emissions Dataset version 2.4); (3) FEERv1 (Fire Energetics and Emissions Research version 1.0). The simulated aerosol optical depth (AOD), absorption AOD (AAOD), angstrom exponent and surface concentrations of aerosol plumes dominated by fire emissions are evaluated and compared to MODIS, OMI, AERONET, and IMPROVE data over different regions. In general, the spatial patterns of biomass burning emissions from these inventories are similar, although the strength of the emissions can be noticeably different. The emissions estimates from QFED are generally larger than those of FEER, which are in turn larger than those of GFED. AOD simulated with all these 3 databases are lower than the corresponding observations in Southern Africa and South America, two of the major biomass burning regions in the world

    Multi-Decadal Change of Atmospheric Aerosols and their Effect on Surface Radiation

    Get PDF
    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model, GOCART, along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007 during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. Particularly: (1) We compare the model calculated clear sky downward radiation at the surface with surface network data from BSRN and CMA (2) We compare the model and surface data with satellite derived downward radiation products from ISCCP and SRS (3) We analyze the long-term global and regional aerosol trends in major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions during the three decades, dust and biomass burning regions that have large interannual variability, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions. The comparisons and methods from this study can be applied to multiple model analysis in the AeroCom framework

    High-Resolution Modeling of the Predictability of Convective Systems, and Influences by Absorbing Aerosols Over Northern India and the Himalayas Foothills During Boreal Summer

    Get PDF
    The Himalayas foothills region (HFR) is an important component of the South Asian monsoon. To the south, the HFR borders the fertile, populous, and heavily polluted Indo-Gangetic Plain (IGP). To the north, it rises to great height (approx. 4-5 km) to the Tibetan Plateau over a distance of less than 100 km. The HFR itself consists of complex mountainous terrain, with strong orographic forcing for precipitation. During the late spring and early summer, dust aerosol from the Thar and Middle East deserts , as well as moisture from the Arabian Sea were transported to the western part of the western part of the IGP and foothills spurs pre-monsoon severe thunderstorm over the region. During the monsoon season (mid June -August) convection from the Bay of Bengal, spread along the foothills northwestward to northern Pakistan. Recent climate model studies and preliminary observations have indicted not only the importance of dynamical forcing of precipitation in the HFR, but also possible strong impacts by the dense aerosols, from both local sources, and remote transport, that blanket the IGP from late spring up to the onset of the monsoon in June, and during monsoon breaks in July. In this work, we use the NASA Unified Weather Research and Forecasting (Nu-WRF) model to study the predictability ( 1-7 days) South Asian monsoon rainfall system. Results of 7 -day forecast experiments using an embedded domain of 27 km and 9 km resolution were conducted for the period June 11- July 15, 2008, with and without aerosol forcing are carried out to assess the intrinsic predictability of rainfall over the HFR, and possible impacts by aerosol direct effect, and possible connection of large-scale South Asian monsoon system

    How Well Does NASA GEOS Model Perform in Simulating Dust Deposition into the Tropical Atlantic Ocean?

    Get PDF
    Massive dust emitted from North Africa can transport long distances across the tropical Atlantic Ocean, reaching the Americas. Dust deposition along the transit adds microorganisms and essential nutrients to marine ecosystem, which has important implications for biogeochemical cycle and climate. However, assessing the dust-ecosystemclimate interactions has been hindered in part by the paucity of dust deposition measurements and large uncertainties associated with oversimplified representations of dust processes in current models. We have recently produced a unique dataset of seasonal dust deposition flux and dust loss frequency into the tropical Atlantic Ocean at a nominal resolution of 200 km x 500 km by using the decade-long (2007-2016) record of aerosol three-dimensional distribution from four satellite sensors, namely CALIOP, MODIS, MISR, and IASI. On the basis of the ten-year average, the yearly dust deposition into the tropical Atlantic Ocean is estimated at 98-153 Tg. The dust deposition shows large spatial and temporal (on seasonal and interannual scale) variability. The satellite observations also yield an estimate of annual mean dust loss frequency of 0.052 ~ 0.078 d-1, a useful diagnostic that makes it possible to disentangle the dust transport and removal processes from the dust emissions when identifying the major factors contributing to the uncertainties and biases in the model simulated dust deposition. In this study, we use the dataset along with in situ and remote sensing observations to assess how well NASA GEOS model performs in simulating trans-Atlantic dust transport and deposition. We found that the GEOS modeling of dust deposition falls within the range of satellite-based estimates. However, this reasonable agreement in dust deposition is a compensation of the model's underestimate of dust emissions and overestimate of dust removal efficiency. Further, the overestimate of dust removal efficiency results largely from the model's overestimate of rainfall rate. Our results provide insights into the model's deficiencies at process level, which could better guide model improvements

    Multi-Decadal Variations of Atmospheric Aerosols and Their Effects on Surface Radiation Trends

    Get PDF
    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. We analyze the long-term global and regional aerosol trends and their relationship to the changes of aerosol and precursor emissions and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world
    • …
    corecore