70 research outputs found

    The association between complement C1q tumour necrosis factor-related protein-1 (CTRP-1) level and metabolic syndrome

    Get PDF
    Introduction: Complement C1q tumour necrosis factor-related protein (CTRP-1) is a member of the C1q protein superfamily that plays a role in metabolism. This retrospective study aimed to investigate associations between CTRP-1 and metabolic syndrome (MetS). Material and methods: This study screened subjects who had undergone regular health examinations at the Physical Examination Centre in the First People’s Hospital of Yinchuan (the Second Affiliated Hospital of Ningxia Medical University) between November 2017 and September 2020. The total recruited population included 430 subjects who had undergone regular health examinations, excluding 112 subjects with high glycated haemoglobin (HbA1c ≄ 7). Finally, the data of 318 participants were further analysed. Non-diabetic subjects were divided into 2 groups: one with MetS and one without MetS (controls). Serum CTRP-1 concentrations were evaluated using an enzyme-linked immunosorbent assay. Results: A total of 318 subjects were included, among whom 176 were diagnosed with MetS (MetS group) and 142 were not (non-MetS controls). The MetS group had significantly lower CTRP-1 levels than non-MetS controls (128.51 [111.56–143.05] vs. 138.82 [122.83–154.33] ng/mL, p < 0.001). Correlation analysis showed that serum CTRP-1 levels correlated negatively with body mass index (r = –0.161, p = 0.004), waist circumference (r = –0.191, p = 0.001), systolic blood pressure (r = –0.198, p < 0.001), diastolic blood pressure (r = –0.145, p = 0.010), fasting blood glucose (FBG) (r = –0.562, p < 0.001), fasting insulin (FIns) (r = –0.424, p < 0.001), and homeostasis model assessment of insulin resistance (HOMA-IR) (r = –0.541, p < 0.001). Multiple linear regression models showed that CTRP-1 levels were associated with MetS (p < 0.01). The lipid profile area under the curve (AUC) was comparable to those for FBG and FIns, and it was significantly higher than the AUCs for demographic variables. Conclusions: The results of this study suggest that the serum CTRP-1 level is negatively associated with MetS. CTRP-1 is a potential metabolism-related protein and is likely to be associated with lipid profiles in MetS

    A novel causal structure-based framework for comparing a basin-wide water–energy–food–ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins

    Get PDF
    The previous comparative studies on watersheds were mostly based on the comparison of dispersive characteristics, which lacked systemicity and causality. We proposed a causal structure-based framework for basin comparison based on the Bayesian network (BN) and focus on the basin-scale water–energy–food–ecology (WEFE) nexus. We applied it to the Syr Darya River basin (SDB) and the Amu Darya River basin (ADB), of which poor water management caused the Aral Sea disaster. The causality of the nexus was effectively compared and universality of this framework was discussed. In terms of changes in the nexus, the sensitive factor for the water supplied to the Aral Sea changed from the agricultural development during the Soviet Union period to the disputes in the WEFE nexus after the disintegration. The water–energy contradiction of the SDB is more severe than that of the ADB, partly due to the higher upstream reservoir interception capacity. It further made management of the winter surplus water downstream of the SDB more controversial. Due to this, the water–food–ecology conflict between downstream countries may escalate and turn into a long-term chronic problem. Reducing water inflow to depressions and improving the planting structure prove beneficial to the Aral Sea ecology, and this effect of the SDB is more significant. The construction of reservoirs on the Panj River of the upstream ADB should be cautious to avoid an intense water–energy conflict such as the SDB's. It is also necessary to promote the water-saving drip irrigation and to strengthen the cooperation

    Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu 2 Se 1‐x I x

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102251/1/adma201302660.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102251/2/adma201302660-sup-0001-S1.pd

    Coincident Activity of Converging Pathways Enables Simultaneous Long-Term Potentiation and Long-Term Depression in Hippocampal CA1 Network In Vivo

    Get PDF
    Memory is believed to depend on activity-dependent changes in the strength of synapses, e.g. long-term potentiation (LTP) and long-term depression (LTD), which can be determined by the sequence of coincident pre- and postsynaptic activity, respectively. It remains unclear, however, whether and how coincident activity of converging efferent pathways can enable LTP and LTD in the pathways simultaneously. Here, we report that, in pentobarbital-anesthetized rats, stimulation (600 pulses, 5 Hz) to Schaffer preceding to commissural pathway within a 40-ms timing window induced similar magnitudes of LTP in both pathways onto synapses of CA1 neurons, with varied LTP magnitudes after reversal of the stimulation sequence. In contrast, in urethane-anesthetized or freely-moving rats, the stimulation to Schaffer preceding to commissural pathway induced Schaffer LTP and commissural LTD simultaneously within a 40-ms timing window, without affecting synaptic efficacy in the reversed stimulation sequence. Coincident activity of Schaffer pathways confirmed the above findings under pentobarbital and urethane anesthesia. Thus, coincident activity of converging afferent pathways tends to switch the pathways to be LTP only or LTP/LTD depending on the activity states of the hippocampus. This network rule strengthens the view that activity-dependent synaptic plasticity may well contribute to memory process of the hippocampal network with flexibility or stability from one state to another

    Influence of Pipe-Jacking Reaction on Earth Pressure of Back Wall of Pilot Tunnel of Subway Station

    No full text
    The study of the distribution form and calculation method of the earth pressure on the back wall of a pilot tunnel under a jacking reaction is very important to ensure the safety and smooth construction of the pipe jacking. Based on a metro station in Shenyang, this paper firstly investigates the effects of the changes in the jacking reaction parameters, such as the loading intensity, loading position, and loading area on the earth pressure and the displacement of the back wall in a pilot tunnel through numerical simulation, and then proposes a formula for calculating the soil reaction on the back wall and verifies it by comparison with the FEA (finite element method) results. The results show that the earth pressure distribution pattern of the back wall is similar to the normal distribution curve under the action of the jacking reaction. The horizontal displacement and earth pressure of the back wall will gradually increase with the increase in the jacking reaction. The horizontal displacement of the back wall is greatest when the load is applied to the middle wall, followed by the top wall and the bottom wall. The maximum horizontal displacement is reduced by approximately 24.25% when the loading position changes from the middle to the bottom. As the loading area increases, the maximum horizontal displacement of the back wall decreases, in the order of 11.8% and 14.45% relative to the previous level. The earth pressure of the back wall also decreases, in the order of 17.92% and 22.76% relative to the previous level. The equations presented are applicable to the calculation of the soil reaction in the limit state

    Establishment and Validation of the Detection of TERT Promoter Mutations by Human Gliomas U251 Cell Lines

    No full text
    Gliomas are the most common type of primary brain tumor, yet the prognosis for glioma patients remains poor. Mutations in the promoter region of the telomerase reverse transcriptase gene (TERTp) are associated with diagnosis and poor prognosis in gliomas. Here, we developed a precise and rapid Sanger sequencing assay to screen or TERTp mutations. We established the Sanger sequencing approach for the detection of TERTp mutations based on human glioma cell lines U251 and assessed the analytical validation by determining the accuracy, sensitivity, precision, and specificity. In our study, we verified the accuracy of Sanger sequencing by the real-time polymerase chain reaction method. Our data showed that TERTp mutations were detected at an analytical sensitivity of 10% per mutant. The precision and specificity validation also showed the desired results. In total, 147 glioma patients were investigated for TERTp mutations, and of each patient, clinical data and molecular characteristics were analyzed. We found that anaplastic oligodendroglioma had the highest frequency of TERTp mutations (66.7%). No differences in TERTp mutation frequency were observed between frozen tissue specimens and formalin-fixed and paraffin-embedded tissue. TERTp mutations were associated with older patients (≄45 years), whereas isocitrate dehydrogenase (IDH) mutations were inclined to a younger age (<45 years), frontal location, and pathologic stage II-III patients. IDH mutations were significantly associated with O6-methylguanine-DNA methyltransferase (MGMT) methylation (P=0.003) and lower Ki-67 protein expression (P=0.011). Moreover, MGMT methylation was enriched in IDH-mutant/TERTp-mutant gliomas, and Ki-67 protein expression was the highest in the IDH-wild type/TERTp-mutant group. Taken together, the findings of this study indicate the establishment of a rapid, precise, and practical Sanger sequencing technique for TERTp mutations in gliomas that may show promising results in clinical applications

    Mechanically Robust Flexible Multilayer Aramid Nanofibers and MXene Film for High-Performance Electromagnetic Interference Shielding and Thermal Insulation

    No full text
    In order to overcome the various defects caused by the limitations of solid metal as a shielding material, the development of electromagnetic shielding materials with flexibility and excellent mechanical properties is of great significance for the next generation of intelligent electronic devices. Here, the aramid nanofiber/Ti3C2Tx MXene (ANF/MXene) composite films with multilayer structure were successfully prepared through a simple alternate vacuum-assisted filtration (AVAF) process. With the intervention of the ANF layer, the multilayer-structure film exhibits excellent mechanical properties. The ANF2/MXene1 composite film exhibits a tensile strength of 177.7 MPa and a breaking strain of 12.6%. In addition, the ANF5/MXene4 composite film with a thickness of only 30 ÎŒm exhibits an electromagnetic interference (EMI) shielding efficiency of 37.5 dB and a high EMI-specific shielding effectiveness value accounting for thickness (SSE/t) of 4718 dB·cm2 g−1. Moreover, the composite film was excellent in heat-insulation performance and in avoiding light-to-heat conversion. No burning sensation was produced on the surface of the film with a thickness of only 100 ÎŒm at a high temperature of 130 °C. Furthermore, the surface of the film was only mild when touched under simulated sunlight. Therefore, our multilayer-structure film has potential significance in practical applications such as next-generation smart electronic equipment, communications, and military applications

    Manipulating the Filler Network Structure and Properties of Polylactide/Carbon Black Nanocomposites with the Aid of Stereocomplex Crystallites

    No full text
    Construction of various filler networks is an important issue for developing high-performance and multifunctional polymer nanocomposites. In this work, we report a facile and effective strategy to manipulate the filler network structure and properties of poly­(l-lactide)/carbon black (PLLA/CB) nanocomposites with the aid of stereocomplex (SC) crystallization between PLLA matrix and small amounts of poly­(d-lactide) (PDLA). The results reveal that the incorporation of only 1 wt % PDLA can facilitate the formation of CB network in PLLA/CB nanocomposites because SC crystallites induced enhancement in the melt viscosity of PLLA matrix could depress CB aggregation, finally leading to an evident decease in the electrical percolation threshold (φ<sub><i>c</i></sub>). However, with further increasing PDLA concentration to 10 wt %, the SC crystallites could organize into a dense network in the matrix and then serve as physical barrier for the networking of CB nanoparticles. As a result, the φ<sub><i>c</i></sub> of the nanocomposites increases sharply. The outstanding nucleating and strengthening effects of such SC crystallites on the nanocomposites are also highlighted. These findings suggest that the formation of SC crystallites could be a promising solution to create PLLA-based nanocomposites with tunable filler networks and properties

    Mutations in the Motile Cilia Gene DNAAF1 Are Associated with Neural Tube Defects in Humans

    No full text
    Neural tube defects (NTDs) are severe malformations of the central nervous system caused by complex genetic and environmental factors. Among genes involved in NTD, cilia-related genes have been well defined and found to be essential for the completion of neural tube closure (NTC). We have carried out next-generation sequencing on target genes in 373 NTDs and 222 healthy controls, and discovered eight disease-specific rare mutations in cilia-related gene DNAAF1. DNAAF1 plays a central role in cytoplasmic preassembly of distinct dynein-arm complexes, and is expressed in some key tissues involved in neural system development, such as neural tube, floor plate, embryonic node, and brain ependyma epithelial cells in zebrafish and mouse. Therefore, we evaluated the expression and functions of mutations in DNAAF1 in transfected cells to analyze the potential correlation of these mutants to NTDs in humans. One rare frameshift mutation (p.Gln341Argfs*10) resulted in significantly diminished DNAAF1 protein expression, compared to the wild type. Another mutation, p.Lys231Gln, disrupted cytoplasmic preassembly of the dynein-arm complexes in cellular assay. Furthermore, results from NanoString assay on mRNA from NTD samples indicated that DNAAF1 mutants altered the expression level of NTC-related genes. Altogether, these findings suggest that the rare mutations in DNAAF1 may contribute to the susceptibility for NTDs in humans
    • 

    corecore