65 research outputs found

    Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition

    Get PDF
    Handwritten digits recognition has been treated as a multi-class classification problem in the machine learning context, where each of the ten digits (0-9) is viewed as a class and the machine learning task is essentially to train a classifier that can effectively discriminate the ten classes. In practice, it is very usual that the performance of a single classifier trained by using a standard learning algorithm is varied on different data sets, which indicates that the same learning algorithm may train strong classifiers on some data sets but weak classifiers may be trained on other data sets. It is also possible that the same classifier shows different performance on different test sets, especially when considering the case that image instances can be highly diverse due to the different handwriting styles of different people on the same digits. In order to address the above issue, development of ensemble learning approaches have been very necessary to improve the overall performance and make the performance more stable on different data sets. In this paper, we propose a framework that involves CNN based feature extraction from the MINST data set and algebraic fusion of multiple classifiers trained on different feature sets, which are prepared through feature selection applied to the original feature set extracted using CNN. The experimental results show that the classifiers fusion can achieve the classification accuracy of ≥ 98%

    Multi-task feature selection for advancing performance of image segmentation

    Get PDF
    Image segmentation is a popular application area of machine learning. In this context, each target region drawn from an image is defined as a class towards recognition of instances that belong to this region (class). In order to train classifiers that recognize the target region to which an instance belongs, it is important to extract and select features relevant to the region. In traditional machine learning, all features extracted from different regions are simply used together to form a single feature set for training classifiers, and feature selection is usually designed to evaluate the capability of each feature or feature subset in discriminating one class from other classes. However, it is possible that some features are only relevant to one class but irrelevant to all the other classes. From this point of view, it is necessary to undertake feature selection for each specific class, i.e, a relevant feature subset is selected for each specific class. In this paper, we propose the so-called multi-task feature selection approach for identifying features relevant to each target region towards effective image segmentation. This way of feature selection requires to transform a multi-class classification task into nn binary classification tasks, where nn is the number of classes. In particular, the Prism algorithm is used to produce a set of rules for class specific feature selection and the K nearest neighbour algorithm is used for training a classifier on a feature subset selected for each class. The experimental results show that the multi-task feature selection approach leads to an significant improvement of classification performance comparing with traditional feature selection approaches

    Algebraic fusion of multiple classifiers for handwritten digits recognition

    Get PDF
    Recognition of handwritten digits is a very popular application of machine learning. In this context, each of the ten digits (0-9) is defined as a class in the setting of machine learning based classification tasks. In general, popular learning methods , such as support vector machine, neural networks and K nearest neighbours, have been used for classifying instances of handwritten digits to one of the ten classes. However, due to the diversity of handwriting styles from different people, it can happen that some handwritten digits (e.g. 4 and 9) are very similar and are thus difficult to distinguish. Also, each single learning algorithm may have its own advantages and disadvantages, which means that a single algorithm would be capable of learning some but not all specific characteristics of handwritten digits. From this point of view, a method for handwritten digits recognition is proposed in the setting of ensemble learning, towards encouraging the diversity among different classifiers trained by different learning algorithms. In particular, the image features of handwritten digits are extracted by using the Convolutional Neural Network architecture. Furthermore, single classifiers trained respectively by K nearest neighbours and random forests are fused as an ensemble one. The experimental results show that the ensemble classifier was able to achieve a recognition accuracy of ≥ 98% using the MNISET data set

    Multi-task feature selection for advancing performance of image segmentation

    Get PDF
    Image segmentation is a popular application area of machine learning. In this context, each target region drawn from an image is defined as a class towards recognition of instances that belong to this region (class). In order to train classifiers that recognize the target region to which an instance belongs, it is important to extract and select features relevant to the region. In traditional machine learning, all features extracted from different regions are simply used together to form a single feature set for training classifiers, and feature selection is usually designed to evaluate the capability of each feature or feature subset in discriminating one class from other classes. However, it is possible that some features are only relevant to one class but irrelevant to all the other classes. From this point of view, it is necessary to undertake feature selection for each specific class, i.e, a relevant feature subset is selected for each specific class. In this paper, we propose the so-called multi-task feature selection approach for identifying features relevant to each target region towards effective image segmentation. This way of feature selection requires to transform a multi-class classification task into nn binary classification tasks, where nn is the number of classes. In particular, the Prism algorithm is used to produce a set of rules for class specific feature selection and the K nearest neighbour algorithm is used for training a classifier on a feature subset selected for each class. The experimental results show that the multi-task feature selection approach leads to an significant improvement of classification performance comparing with traditional feature selection approaches

    Algebraic fusion of multiple classifiers for handwritten digits recognition

    Get PDF
    Recognition of handwritten digits is a very popular application of machine learning. In this context, each of the ten digits (0-9) is defined as a class in the setting of machine learning based classification tasks. In general, popular learning methods , such as support vector machine, neural networks and K nearest neighbours, have been used for classifying instances of handwritten digits to one of the ten classes. However, due to the diversity of handwriting styles from different people, it can happen that some handwritten digits (e.g. 4 and 9) are very similar and are thus difficult to distinguish. Also, each single learning algorithm may have its own advantages and disadvantages, which means that a single algorithm would be capable of learning some but not all specific characteristics of handwritten digits. From this point of view, a method for handwritten digits recognition is proposed in the setting of ensemble learning, towards encouraging the diversity among different classifiers trained by different learning algorithms. In particular, the image features of handwritten digits are extracted by using the Convolutional Neural Network architecture. Furthermore, single classifiers trained respectively by K nearest neighbours and random forests are fused as an ensemble one. The experimental results show that the ensemble classifier was able to achieve a recognition accuracy of ≥ 98% using the MNISET data set

    Human Face Sketch to RGB Image with Edge Optimization and Generative Adversarial Networks

    Get PDF
    Generating an RGB image from a sketch is a challenging and interesting topic. This paper proposes a method to transform a face sketch into a color image based on generation confrontation network and edge optimization. A neural network model based on Generative Adversarial Networks for transferring sketch to RGB image is designed. The face sketch and its RGB image is taken as the training data set. The human face sketch is transformed into an RGB image by the training method of generative adversarial networks confrontation. Aiming to generate a better result especially in edge, an improved loss function based on edge optimization is proposed. The experimental results show that the clarity of the output image, the maintenance of facial features, and the color processing of the image are enhanced best by the image translation model based on the generative adversarial network. Finally, the results are compared with other existing methods. Analyzing the experimental results shows that the color face image generated by our method is closer to the target image, and has achieved a better performance in term of Structural Similarity (SSIM)

    N configuration control of N-doped carbon for stabilizing Cu nanoparticles: The synergistic effects on oxy-carbonylation of methanol

    Get PDF
    Abstract(#br)N-doped carbons (NCs) have attracted considerable attention for their outstanding physicochemical properties, including tunable porosity, electronic features and modified surface. Here, we report the preparation of hierarchically porous NCs derived from the direct pyrolysis of ZIFs (ZIF-7 and ZIF-8) and poly– m –phenylenediamine-covered carbon black (P m PDA-C) for the stabilization of Cu nanoparticles (NPs). The configuration of N species can be effectively regulated by changing the ligand of ZIFs and pyrolysis atmosphere. A remarkable N configuration synergistic effect is observed in the oxy-carbonylation of methanol to dimethyl carbonate with molecular oxygen. The results indicate that the Cu NPs on pristine carbon have a turn over frequency (TOF) of 4.4 h −1 for the reaction, while those on NCs from ZIF-8 and ZIF-7 present TOF values as high as 17.9 h −1 and 28.5 h −1 , respectively. The extensive characterizations reveal that NCs with a nitrogen content of 2–5 wt% and a pyrrolic-/pyridinic-N molar ratio of 2–3 are vital for the performance enhancement of Cu NPs. This work shows that the stabilization and enhanced performance of active Cu NPs on NCs are realized by the rational design of precursors to generate the proper N configurations
    • …
    corecore