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Abstract:

Image segmentation is a popular application area of machine
learning. In this context, each target region drawn from an image
is defined as a class towards recognition of instances that belong
to this region (class). In order to train classifiers that recognize
the target region to which an instance belongs, it is important to
extract and select features relevant to the region. In traditional
machine learning, all features extracted from different regions are
simply used together to form a single feature set for training classi-
fiers, and feature selection is usually designed to evaluate the capa-
bility of each feature or feature subset in discriminating one class
from other classes. However, it is possible that some features are
only relevant to one class but irrelevant to all the other classes.
From this point of view, it is necessary to undertake feature selec-
tion for each specific class, i.e, a relevant feature subset is selected
for each specific class. In this paper, we propose the so-called
multi-task feature selection approach for identifying features rel-
evant to each target region towards effective image segmentation.
This way of feature selection requires to transform a multi-class
classification task into n binary classification tasks, where n is the
number of classes. In particular, the Prism algorithm is used to
produce a set of rules for class specific feature selection and the
K nearest neighbour algorithm is used for training a classifier on
a feature subset selected for each class. The experimental results
show that the multi-task feature selection approach leads to an
significant improvement of classification performance comparing
with traditional feature selection approaches.
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1. Introduction

Image segmentation has a wide array of applications ranging
from object detection, image classification scene understanding
and so on [1]. Deep Convolutional Neural Networks (DCNNs)
have pushed the performance of computer vision systems to
soaring heights on a broad array of high-level problems, includ-
ing image segmentation and object detection [2]. In the setting
of machine learning, image segmentation is partially defined as
a multi-class classification problem. In this context, an image
is divided into several target regions and each of them is con-
sidered as a class towards recognizing instances that lie in this
region. In order to train classifiers that can effectively identify
the region to which an instance belongs, it is crucial to extract
and select relevant features.

In traditional machine learning, feature selection is typically
done in a single-task manner, which means that all features ex-
tracted from different target regions of images are simply used
together to form a feature set and each feature or feature subset
is evaluated in terms of their capability of discriminating be-
tween different classes. However, as argued in [3], it is highly
possible that some features are only relevant to one class but
are irrelevant to all the other classes. From this point of view,
single-task feature selection is likely to result in high dimen-
sionality and sparsity of a feature set, since some selected fea-
tures may be relevant in general but not for specific classes,
i.e. inclusion of such features would increase the dimension-
ality and cause missing values for instances that belong to the
classes for which the features are irrelevant.

In this paper, we propose a multi-task feature selection ap-
proach to identify a set of relevant features for each specific



class. In particular, we employ the Prism algorithm [4] to learn
a set of rules for each class, in order to identify the relevance
of features or feature subsets for each class. Furthermore, a
KNN classifier is trained on each feature subset selected for
a specific class to investigate the impact of multi-task feature
selection on the classification performance for each class, in
comparison with the case of single-task feature selection, i.e. a
KNN classifier is trained on a single feature subset.

The rest of this paper is organized as follows: Section 2 pro-
vides an overview of image segmentation and a review of fea-
ture selection approaches; In Section 3, we present our pro-
posed approach multi-task feature selection and justify its sig-
nificance in image segmentation. In Section 4, we report an
experimental study using a UCI data set on image segmenta-
tion and the results are discussed critically and comparatively.
Section 5 provides a summary of the contributions of this paper
and some further directions are suggested towards advancing
this research area in the future.

2. Relate Work

In this section, we review some related work on image seg-
mentation. Also, existing approaches of feature selection are
reviewed in order to identify the advantages and disadvantages
of these approaches.

2.1. Overview of image segmentation

Over the past few years the breakthroughs of deep learning in
image classication have been quickly transferred to the seman-
tic segmentation task, segmentation techniques can be gener-
ally categorized into two frameworks, non-deep learning meth-
ods [5, 6, 7, 8, 9] and deep learning methods.

For the first framework, most of the successful semantic seg-
mentation systems developed in the previous decade relied on
hand-crafted features combined with at classiers. For example,
[10] proposed an learned model, which is used for automatic vi-
sual understanding and semantic segmentation of photographs
based on Boosting. [11] proposed semantic text on forests,
which are ensembles of decision trees that act directly on image
pixels, and therefore do not need the expensive computation
of filter-bank responses or local descriptors. [12] conducted a
study with color image segmentation using pixel wise support
vector machine classification. The performance of these meth-
ods has always been compromised by the limited expressive
power of the features.

Recently, various methods [13, 14] based on Fully Convo-
lutional Networks (FCNs) [15] demonstrate astonishing results

FIGURE 1. Feature Section Process [3, 17]

on several semantic segmentation benchmarks. [1] proposed
a DeepLab system which had three challenges in the applica-
tion of DCNNs to semantic image segmentation, including re-
duction of feature resolution, use of object multiple scales and
reduction of localization accuracy due to DCNN invariance.

Multiscale Combinatorial Grouping (MCG) was proposed
in [2] for image segmentation. During the approach, there was
a high-performance hierarchical segmenter that makes effec-
tive use of multiscale information, and a grouping strategy that
combines the multiscale regions into highly-accurate objects.

2.2. Review of feature selection approaches

As introduced in [16], the feature selection process involves
four main steps: generation, evaluation, stopping criterion and
validation, as illustrated in Fig. 1. In particular, the genera-
tion step is aimed at generating a candidate feature subset. In
the evaluation stage, a heuristic function is used to evaluate the
subset of features selected in the generation stage. A stopping
criteria is then used to decide whether it is necessary to stop
the feature selection process. If yes, the selected feature subset
is validated in the last stage. Otherwise, the feature selection
process needs to be repeated through generation and evaluation
of a candidate feature subset.

In general, feature selection techniques belong to two ap-
proaches, namely, filter and wrapper. The main difference be-
tween the approaches is in terms of the way of feature evalua-
tion. The filter approach employs heuristics to rank the features
according to their importance, whereas the wrapper approach
employs a learning algorithm to train classifiers on different
subsets of features and then check the performance of these
classifiers for evaluating the corresponding feature subsets.

In terms of the performance of feature selection, the filter
approach is aimed at independent evaluation of features regard-
less of the fitness of the employed learning algorithm. In other
words, a set of features is evaluated and the relevant ones are



selected without considering that the selected feature subset
is suitable or not for the chosen learning algorithm to train a
model. According to experimental results reported in [16], the
filter approach leads to a low level of time complexity. How-
ever, when the selected feature subset is used for a selected
algorithm to train a classifier, the classification accuracy may
be low due to the case that the selected feature subset is not
suitable for training of classifiers by using this algorithm [18].

In contrast, the wrapper approach is aimed at evaluation
of features through measuring the accuracy of the classifiers
trained on different subsets of features. In other words, a num-
ber (n) of different feature subsets are provided and a learning
algorithm is used to train n classifiers on these feature subsets.
The feature subset, which leads to the best performing classi-
fier, is selected. According to the experimental results reported
in [16], the wrapper approach leads to very high accuracy but
the time complexity is very high, which mainly results from
the case that all the possible combinations of features forming
different feature subsets need to be examined.

3. Multi-task Feature Selection

As mentioned in Section 1, multi-task feature selection is
aimed at selecting a feature subset for each specific class. In
this section, we present our proposed approach to illustrate how
to evaluate the relevance of a feature or feature subset for a
class. Also, the significance of this approach for image seg-
mentation is justified.

3.1. Procedure

Our proposed approach is essentially wrapper based, since
it needs to employ a learning algorithm to train a classifier
towards feature evaluation and selection. In particular, we
propose to use the Prism algorithm to learn a set of rules for
each class. The procedure of this algorithm is illustrated in [4]
and shown as below:

For each class c used in turn for original training set T :
Step 1: Calculate the probability P (class = c|Ai = vij) given
each attribute-value pair Ai = vij ;
Step 2: Select the attribute value pair Am = vmn that provides
the max probability and create a subset T ′ of instances that
meet Am = vmn

Step 3: repeat Steps 1 and 2 for the subset T ′ until all instances
in T ′ belong to the same class
Step 4: repeat Steps 1-3 for original training set T

In the above context, the learning of each single rule is
essentially to select one or more feature-value pairs to be
added as rules terms to form the antecedent (the left hand side)
of the rule. Each set of rules learned for a specific class would
have the same rule consequent (the right hand side of a rule).
Therefore, each feature, which is selected alongside one of its
possible values as a term of at least one rule for a class, would
be judged as relevant for this class. For example, there are two
rules that are learned from a data set that contains four features
a, b, c and d and two classes 0 and 1, and the two rules are
represented as follows:

• if a=1 and b=1 then class=0;

• if c=1 and d=1 then class=1;

The above example would indicate that the two features a and
b are relevant for class 0 and the other two features c and d are
relevant for class 1.

Since the feature selection is undertaken in a multi-task man-
ner, it is necessary to train classifiers in the same manner, i.e.
multi-task learning of classifiers. In particular, if a data set con-
tains more than two classes, we need to transform the multi-
class classification task into n binary classification tasks, where
n is the number of classes. For example, if a data set contains
three classes A, B and C, we need to recreate three data sets by
selecting one class as the positive class and renaming the other
class labels to reflect the negative class, i.e. the three data sets
would show the pair of class labels (A and ¬A), (B and ¬B)
and (C and ¬C), respectively.

Following the transformation of the classification task and
recreation of the data sets, a classifier is trained on each data set
for a specific class by using a learning algorithm. In this paper,
we would employ the K nearest neighbours (KNN) algorithm
due to its nature of instance based learning and its popular ap-
plication in image classification. In the classification state, each
classifier would provide a single output. If two or more clas-
sifiers output their corresponding positive classes, e.g. the first
classifier outputs A rather than ¬A and the second classifier
outputs B rather than ¬B, then the one with higher confidence
would be selected as the final classification. Measure of confi-
dence can be achieved by evaluating the overall accuracy of a
classifier, the prevision/recall/F-measure for a class or the pre-
diction confidence on an instance.

3.2. Justification

As described in Section 2.2, feature selection can be
achieved through two approaches, namely, filter and wrapper.



Both approaches are actually designed in a single-task man-
ner, since they generally evaluate the capability of features in
discriminating one class from the other classes, without con-
sidering the case that a feature may be only relevant to one or
some but not all of the classes.

In general, a feature may be irrelevant for most of the classes
but is still relevant to one or a few classes. For example, in
the context of image segmentation, the features are extracted
from different target regions of images. When each target re-
gion is defined as a class, it would be very normal that features
extracted from one region are not relevant to other regions.

In the setting of single-task feature selection, the above kind
of features is likely to judged as irrelevant and thus to be re-
moved prior to training of classifiers, leading to the case of in-
correct classification of instances that belong to the class for
which the removed feature is relevant. However, multi-task
feature selection is essentially designed to evaluate the rele-
vance of features for each specific class, so the above case can
be avoided and instances of each class can be identified more
effectively given more relevant features for discriminating the
class from other classes.

On the other hand, a feature may be relevant to the majority
of the classes but it is irrelevant to one or a few classes. In the
setting of single-task feature selection, this kind of features is
likely to be kept for training classifiers, which would increase
the sparsity of a data set, i.e. missing values would be present
on instances of the class for which some features are irrelevant.
However, multi-task feature selection can achieve to keep only
features that are relevant for a specific class, i.e. all the selected
features are relevant only for the target class (corresponding to
a target region), so the dimensionality and sparsity would be
much reduced in comparison with single-task feature selection.

4. Experimental setup and results

In this section, we report an experimental study using the
image segmentation data set retrieved from the UCI reposi-
tory [19]. This data set contains 19 features and 2310 instances.
The instances are normally distributed over 7 classes, namely,
brickface, sky, foliage, cement, window, path and grass, i.e.
each of the 7 classes contains 330 instances. The 7 classes
essentially represent 7 target regions of images and the 2310
instances are randomly drawn from 7 outdoor images [19].

The experimental study consists of three parts. The first two
parts are aimed at comparing the KNN algorithm with several
popular learning algorithms, which include C4.5 (the most pop-
ular algorithm of decision tree learning), Naive Bayes (NB) and
multi-layer perceptron (MLP), in order to show how well KNN

can achieve to effectively recognize instances of each target re-
gion, in comparison with other learning algorithms. In partic-
ular, the first part of the experimental study does not involve
feature selection, all the algorithms are used to train classifiers
on the original features. In contrast, the second part involves fil-
ter based single-task feature selection by using the Correlation-
based Feature Subset Selection (CFSS) method [20] in order to
show how single task feature selection can impact on the per-
formance of image segmentation when different learning algo-
rithms are employed. The third part of the experimental study
is designed to show the effectiveness of our proposed multi-
task feature selection on boosting the performance of image
segmentation, while KNN is used to train classifiers.

TABLE 1. Feature selection results

Feature b s f c w p g

region-centroid-col 1 0 1 1 1 0 0

region-centroid-row 1 0 1 1 1 1 1

region-pixel-count 0 0 1 0 1 0 0

short-line-density-5 0 0 1 1 1 0 0

short-line-density-2 0 0 1 1 1 0 0

vedge-mean 1 0 1 1 1 0 0

vegde-sd 1 0 1 1 1 0 0

hedge-mean 0 0 1 1 1 0 0

hedge-sd 1 0 1 1 1 1 0

intensity-mean 1 1 1 1 1 1 1

rawred-mean 1 0 1 1 1 0 0

rawblue-mean 0 0 1 1 1 0 0

rawgreen-mean 1 0 1 1 1 1 0

exred-mean 1 0 1 1 1 0 0

exblue-mean 0 0 1 1 1 0 0

exgreen-mean 1 0 1 1 1 0 0

value-mean 0 0 1 0 1 0 0

saturation-mean 0 0 1 1 1 0 0

hue-mean 1 0 1 1 1 1 1

All the experiments are conducted by using 10-fold cross
validation. In terms of parameters setting, the K value of the
KNN algorithm is set to 3 and the MLP classifiers are trained
through 100 iterations with 2 hidden layers and 10 units in each
layer. In addition, in the setting of multi-task feature selec-
tion, 7 new data sets are recreated by renaming the class labels
of the original data set, i.e. the 7 new data sets contain the
7 pairs of class labels (‘brickface’ and ‘not brickface’), (‘sky’
and ‘not sky’), (‘foliage’ and ‘not foliage’), (‘cement’ and ‘not
cement’), (‘window’ and ‘not window’), (‘path’ and ‘not path’)
and (‘grass’ and ‘not grass’), respectively. As introduced in



TABLE 2. Classification accuracy on segment data

Features MLP C4.5 NB KNN

original 0.831 0.959 0.763 0.963
reduced 0.788 0.965 0.816 0.929

Section 3, the above setting is aimed to transform a multi-class
classification task into 7 binary classification tasks, such that
feature evaluation can be done in a class specific way.

According to the results reported in [3], there are 247 rules
learned from the image segmentation data set by using the
Prism algorithm. For each class, different features are used to
form the antecedent of these relevant rules, as shown in Table 1.
In particular, ‘1’ indicates that the the corresponding feature is
selected alongside one of its possible values for forming the
antecedent of at least one rule for the target class, whereas ‘0’
indicates that the feature is not selected and is thus considered
irrelevant for the class. Also, each class is expressed by using
the initial of its label, e.g. ‘b’ represents the ‘brickface’ class.

The results for the first two parts of experimental studies are
shown in Table 2, which indicate that the KNN algorithm out-
performs all the other ones when the original features are used
for training classifiers. However, after the dimensionality is
reduced to 8 through using the CFSS method in a single-task
manner, the performance of MLP and KNN drops, whereas the
one of C4.5 and NB is improved. The results support the ar-
gument made in Section 2.2 that the filter approach does not
take into account the fitness of the selected features for a spe-
cific learning algorithm. Moreover, the negative impact of the
feature selection approach on the KNN performance could in-
dicate that some important features have potentially been re-
moved, i.e. the way of single task feature selection may results
in removal of some features that are relevant for one or some
classes but not for the majority of the classes. Given that KNN
essentially needs to examine all the given features for training
a classifier, the above way of feature selection is likely to affect
the classification performance.

In order to overcome the limitations of single-task feature
selection, the third part of the experimental study is thus con-
ducted and the results are shown in Table 3. In particular, the
second column shows the performance on the original features,
the last two columns show the performance when single-task
and multi-task feature selection are adopted, respectively.

The results indicate that the adoption multi-task feature se-
lection leads to advances in performance (F-measure) for 5 out
of 7 classes, in comparison with the case of single-task fea-
ture selection. Comparing with the case of using original fea-
tures, although the results do not show an improvement of the

TABLE 3. F-measure for each class

Class All STFS MTFS

brickface 0.976 0.900 0.979
sky 1 1 1
foliage 0.920 0.864 0.916
cement 0.944 0.925 0.934
window 0.910 0.837 0.889
path 0.992 0.998 0.995
grass 0.998 0.979 0.995
overall 0.963 0.929 0.958

overall F-measure, it still achieves to improve the F-measure
for 2 classes. Moreover, the dimensionality is significantly re-
duced, which contributes to effective reduction of the computa-
tional complexity without loss of accuracy, especially given the
case that KNN achieves perfect classification for the ‘sky’ class
on the original features but the multi-task feature selection ap-
proach only provides one feature (intensity-mean) for KNN to
train a classifier leading to perfect classification for this class.

5. Conclusions

In this paper, we proposed a multi-task feature selection ap-
proach through class-specific feature evaluation. In particular,
we employed the Prism algorithm to learn a set of rules for each
class, in order to identify which features are relevant for which
classes. Furthermore, the KNN algorithm was used for training
a classifier on each feature subset selected for a specific class.
We compared the performance of multi-task feature selection
with the one of filter based single-task feature selection, while
KNN was used for training classifiers. The experimental results
show that the performance for recognizing instances of most
classes is significantly improved and thus indicate the effec-
tiveness of multi-task feature selection on image segmentation.
In addition, comparing with the case of using original features,
the adoption of multi-task feature selection contributes to sig-
nificant reduction of computational complexity without loss of
accuracy. In future, we will investigate more broadly the im-
pact of multi-task feature selection on image classification. We
will also investigate the use of optimization techniques towards
selection of an optimal set of features for each class.
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