9 research outputs found

    A Lifting Relation from Macroscopic Variables to Mesoscopic Variables in Lattice Boltzmann Method: Derivation, Numerical Assessments and Coupling Computations Validation

    Full text link
    In this paper, analytic relations between the macroscopic variables and the mesoscopic variables are derived for lattice Boltzmann methods (LBM). The analytic relations are achieved by two different methods for the exchange from velocity fields of finite-type methods to the single particle distribution functions of LBM. The numerical errors of reconstructing the single particle distribution functions and the non-equilibrium distribution function by macroscopic fields are investigated. Results show that their accuracy is better than the existing ones. The proposed reconstruction operator has been used to implement the coupling computations of LBM and macro-numerical methods of FVM. The lid-driven cavity flow is chosen to carry out the coupling computations based on the numerical strategies of domain decomposition methods (DDM). The numerical results show that the proposed lifting relations are accurate and robust

    Roles of leptin on energy balance and thermoregulation in Eothenomys miletus

    Get PDF
    Leptin is a hormone mainly synthesized and secreted by white adipose tissue (WAT), which regulates various physiological processes. To investigate the role of leptin in energy balance and thermoregulation in Eothenomys miletus, voles were randomly divided into leptin-injected and PBS-injected groups and placed at 25°C ± 1°C with a photoperiod of 12 L:12 D. They were housed under laboratory conditions for 28 days and compared in terms of body mass, food intake, water intake, core body temperature, interscapular skin temperature, resting metabolic rate (RMR), nonshivering thermogenesis (NST), liver and brown adipose tissue (BAT) thermogenic activity, and serum hormone levels. The results showed that leptin injection decreased body mass, body fat, food intake, and water intake. But it had no significant effect on carcass protein. Leptin injection increased core body temperature, interscapular skin temperature, resting metabolic rate, non-shivering thermogenesis, mitochondrial protein content and cytochrome C oxidase (COX) activity in liver and brown adipose tissue, uncoupling protein 1 (UCP1) content and thyroxin 5′-deiodinase (T45′-DII) activity in brown adipose tissue significantly. Serum leptin, triiodothyronine (T3), thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH) concentrations were also increased significantly. Correlation analysis showed that serum leptin levels were positively correlated with core body temperature, body mass loss, uncoupling protein 1 content, thyroxin 5′-deiodinase activity, nonshivering thermogenesis, and negatively correlated with food intake; thyroxin 5′-deiodinase and triiodothyronine levels were positively correlated, suggesting that thyroxin 5′-deiodinase may play an important role in leptin-induced thermogenesis in brown adipose tissue. In conclusion, our study shows that exogenous leptin is involved in the regulation of energy metabolism and thermoregulation in E. miletus, and thyroid hormone may play an important role in the process of leptin regulating energy balance in E. miletus

    Deformation evolution law and early warning criterion of Xinhua landslide

    No full text
    Objective To reveal the deformation evolution of the Xinhua landslide in Luding County, Sichuan Province under the comprehensive effects of reservoir impoundment, reservoir water level fluctuations and seasonal rainfall, and to explore the progressive cumulative effect of the strength degradation of the landslide rock and soil mass under the coupling of multiple factors. Methods In this paper, based on a field investigation and multisource long sequence monitoring data analysis of the Xinhua landslide in the reservoir area of the hydropower project, combined with the three-stage evolution characteristics of the landslide cumulative deformation-time (S-t) curve and the measured S-t curve of the Xinhua landslide, the evolution stages of the three-step deformation cycles of the Xinhua landslide are identified and divided. At the same time, the improved tangent angle method is used for calculation and analysis, and a quantitative classification standard for Xinhua landslide classification early warning based on the improved displacement tangent angle early warning threshold is constructed. Results The results show that the short-term large increase of water level during the initial impoundment period, the rapid decrease of water level during the reservoir operation period and the influence of seasonal heavy rainfall are the main factors to accelerate the deformation of the Xinhua landslide. Conclusion According to the analysis and discussion, the improved displacement tangent angle early warning threshold can provide guidance for identifying the current stability state and potential risks of the Xinhua landslide to a certain extent, but multiple early warning indicators should still be considered, and the signs of macroscopic deformation and failure of landslides should be integrated for judgement

    Preliminary results on a near-real-time rock slope damage monitoring system based on relative velocity changes following the September 5, 2022 MS 6.8 Luding, China earthquake

    No full text
    Relative seismic velocity change (dv/v) is important for monitoring changes in subsurface material properties and evaluating earthquake-induced rock slope damage in a geological disaster-prone region. In this paper, we present a rapid damage assessment on three slow-moving rock slopes by measuring dv/v decrease caused by the 2022 ​MS 6.8 Luding earthquake in Southwest China. By applying the stretching method to the cross-correlated seismic wavefields between sensors installed on each slope, we obtain earthquake-induced dv/v decreases of ∼2.1%, ∼0.5%, and ∼0.2% on three slopes at distances ranging from ∼86 to ∼370 ​km to the epicenter, respectively. Moreover, based on seismic data recorded by 16 sensors deployed on the rock slope at a distance of ∼370 ​km away from the epicenter, a localized dv/v decease region was observed at the crest of the slope by calculating the spatial dv/v images before and after the earthquake. We also derive an empirical in situ stress sensitivity of −7.29✕10−8/Pa by relating the dv/v change to the measured peak dynamic stresses. Our results indicate that a rapid dv/v assessment not only can help facilitate on-site emergency response to earthquake-induced secondary geological disasters but also can provide a better understanding of the subsurface geological risks under diverse seismic loadings

    Long noncoding RNA H19 upregulates vascular endothelial growth factor A to enhance mesenchymal stem cells survival and angiogenic capacity by inhibiting miR-199a-5p

    No full text
    Abstract Background Currently, the overall therapeutic efficiency of mesenchymal stem cells (MSCs) transplantation for the treatment of cardiovascular disease is not satisfactory. The low viability and angiogenic capacity of the implanted cells in the local infarct tissues restrict their further application. Evidence shows that long noncoding RNA H19 (lncRNA-H19) mediates cell survival and angiogenesis. Additionally, it is also involved in MSCs biological activities. This study aimed to explore the functional role of lncRNA-H19 in MSCs survival and angiogenic capacity as well as the underlying mechanism. Methods MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells at the third passage were divided into the following groups: MSCs+H19, MSCs+H19 NC, MSCs+si-H19, MSCs+si-H19 NC and MSCs. The MSCs+H19 and MSCs+H19 NC groups were transfected with lncRNA-H19 and lncRNA-H19 scramble RNA respectively. The MSCs+si-H19 and MSCs+si-H19 NC groups were transfected with lncRNA-H19 siRNA and lncRNA-H19 siRNA scramble respectively. MSCs were used as the blank control. All groups were exposed to normoxia (20% O2) and hypoxia (1% O2)/serum deprivation (H/SD) conditions for 24 h. Cell proliferation, apoptosis and vascular densities were assessed. Bioinformatics and dual luciferase reporter assay were performed. Relevant biomarkers were detected in different experimental groups. Results Overexpression of lncRNA-H19 improved survival and angiogenic capacity of MSCs under both normoxia and H/SD conditions, whereas its knockdown impaired cell viability and their angiogenic potential. MicroRNA-199a-5p (miR-199a-5p) targeted and downregulated vascular endothelial growth factor A (VEGFA). MiR-199a-5p was a target of lncRNA-H19. LncRNA-H19 transfection led to a decreased level of miR-199a-5p, accompanied with an elevated expression of VEGFA. However, both miR-199a-5p and VEGFA presented inverse alterations in the condition of lncRNA-H19 knockdown. Conclusions LncRNA-H19 enhanced MSCs survival and their angiogenic potential in vitro. It could directly upregulate VEGFA expression by inhibiting miR-199a-5p as a competing endogenous RNA. This mechanism contributes to a better understanding of MSCs biological activities and provides new insights for cell therapy based on MSCs transplantation

    Inhibition of tartrate-resistant acid phosphatase 5 can prevent cardiac fibrosis after myocardial infarction

    No full text
    Abstract Background Myocardial infarction (MI) leads to enhanced activity of cardiac fibroblasts (CFs) and abnormal deposition of extracellular matrix proteins, resulting in cardiac fibrosis. Tartrate-resistant acid phosphatase 5 (ACP5) has been shown to promote cell proliferation and phenotypic transition. However, it remains unclear whether ACP5 is involved in the development of cardiac fibrosis after MI. The present study aimed to investigate the role of ACP5 in post-MI fibrosis and its potential underlying mechanisms. Methods Clinical blood samples were collected to detect ACP5 concentration. Myocardial fibrosis was induced by ligation of the left anterior descending coronary artery. The ACP5 inhibitor, AubipyOMe, was administered by intraperitoneal injection. Cardiac function and morphological changes were observed on Day 28 after injury. Cardiac CFs from neonatal mice were extracted to elucidate the underlying mechanism in vitro. The expression of ACP5 was silenced by small interfering RNA (siRNA) and overexpressed by adeno-associated viruses to evaluate its effect on CF activation. Results The expression of ACP5 was increased in patients with MI, mice with MI, and mice with Ang II-induced fibrosis in vitro. AubipyOMe inhibited cardiac fibrosis and improved cardiac function in mice after MI. ACP5 inhibition reduced cell proliferation, migration, and phenotypic changes in CFs in vitro, while adenovirus-mediated ACP5 overexpression had the opposite effect. Mechanistically, the classical profibrotic pathway of glycogen synthase kinase-3β (GSK3β)/β-catenin was changed with ACP5 modulation, which indicated that ACP5 had a positive regulatory effect. Furthermore, the inhibitory effect of ACP5 deficiency on the GSK3β/β-catenin pathway was counteracted by an ERK activator, which indicated that ACP5 regulated GSK3β activity through ERK-mediated phosphorylation, thereby affecting β-catenin degradation. Conclusion ACP5 may influence the proliferation, migration, and phenotypic transition of CFs, leading to the development of myocardial fibrosis after MI through modulating the ERK/GSK3β/β-catenin signaling pathway
    corecore