4,612 research outputs found

    Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal

    Get PDF
    We propose a kind of electromagnetic (EM) diode based on a two-dimensional nonreciprocal gyrotropic photonic crystal. This periodic microstructure has separately broken symmetries in both parity (P) and time-reversal (T) but obeys parity-time (PT) symmetry. This kind of diode could support bulk one-way propagating modes either for group velocity or phase velocity with various types of negative and positive refraction. This symmetry-broken system could be a platform to realize abnormal photoelectronic devices, and it may be analogous to an electron counterpart with one-way features

    Two-phase Unsourced Random Access in Massive MIMO: Performance Analysis and Approximate Message Passing Decoder

    Full text link
    In this paper, we design a novel two-phase unsourced random access (URA) scheme in massive multiple input multiple output (MIMO). In the first phase, we collect a sequence of information bits to jointly acquire the user channel state information (CSI) and the associated information bits. In the second phase, the residual information bits of all the users are partitioned into sub-blocks with a very short length to exhibit a higher spectral efficiency and a lower computational complexity than the existing transmission schemes in massive MIMO URA. By using the acquired CSI in the first phase, the sub-block recovery in the second phase is cast as a compressed sensing (CS) problem. From the perspective of the statistical physics, we provide a theoretical framework for our proposed URA scheme to analyze the induced problem based on the replica method. The analytical results show that the performance metrics of our URA scheme can be linked to the system parameters by a single-valued free entropy function. An AMP-based recovery algorithm is designed to achieve the performance indicated by the proposed theoretical framework. Simulations verify that our scheme outperforms the most recent counterparts.Comment: 16pages,7 figure

    A Fully Bayesian Approach for Massive MIMO Unsourced Random Access

    Full text link
    In this paper, we propose a novel fully Bayesian approach for the massive multiple-input multiple-output (MIMO) massive unsourced random access (URA). The payload of each user device is coded by the sparse regression codes (SPARCs) without redundant parity bits. A Bayesian model is established to capture the probabilistic characteristics of the overall system. Particularly, we adopt the core idea of the model-based learning approach to establish a flexible Bayesian channel model to adapt the complex environments. Different from the traditional divide-and-conquer or pilot-based massive MIMO URA strategies, we propose a three-layer message passing (TLMP) algorithm to jointly decode all the information blocks, as well as acquire the massive MIMO channel, which adopts the core idea of the variational message passing and approximate message passing. We verify that our proposed TLMP significantly enhances the spectral efficiency compared with the state-of-the-arts baselines, and is more robust to the possible codeword collisions

    Simple approach to estimating the van der Waals interaction between carbon nanotubes

    Get PDF
    The van der Waals (vdW) interactions between carbon nanotubes (CNTs) were studied based on the continuum Lennard-Jones model. It was found that all the vdW potentials between two arbitrary CNTs fall on the same curve when plotted in terms of certain reduced parameters, the well depth, and the equilibrium vdW gap. Based on this observation, an approximate approach is developed to obtain the vdW potential between two CNTs without time-consuming computations. The vdW potential estimated by this approach is close to that obtained from complex integrations. Therefore, the developed approach can greatly simplify the calculation of vdW interactions between CNTs

    Asymmetrically interacting spreading dynamics on complex layered networks

    Get PDF
    The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics.Comment: 29 pages, 14 figure

    One-way cloak based on nonreciprocal photonic crystal

    Get PDF
    We propose a physical concept of non-reciprocal transformation optics, by which a one-way invisible cloak is designed. The one-way invisible cloak is made of a coordinate-transformed nonreciprocal photonic crystal, showing a perfect cloaking for wave incident from one direction but acting as a perfect reflector for wave from the counter direction. The proposed design shows a high promise of applications in military, as protecting the own information to be detected but efficiently grabbing the information from the “enemy” side

    Canonical interpretation of Y(10750)Y(10750) and Υ(10860)\Upsilon(10860) in the Υ\Upsilon family

    Full text link
    Inspired by the new resonance Y(10750)Y(10750), we calculate the masses and two-body OZI-allowed strong decays of the higher vector bottomonium sates within both screened and linear potential models. We discuss the possibilities of Υ(10860)\Upsilon(10860) and Y(10750)Y(10750) as mixed states via the SDS-D mixing. Our results suggest that Y(10750)Y(10750) and Υ(10860)\Upsilon(10860) might be explained as mixed states between 5S5S- and 4D4D-wave vector bbˉb\bar{b} states. The Y(10750)Y(10750) and Υ(10860)\Upsilon(10860) resonances may correspond to the mixed states dominated by the 4D4D- and 5S5S-wave components, respectively. The mass and the strong decay behaviors of the Υ(11020)\Upsilon(11020) resonance are consistent with the assignment of the Υ(6S)\Upsilon(6S) state in the potential models.Comment: 9 pages, 4 figures. More discussions are adde
    corecore