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The spread of disease through a physical-contact network and the spread of information about the disease on
a communication network are two intimately related dynamical processes. We investigate the asymmetrical
interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on
the two fundamental quantities underlying any spreading process: epidemic threshold and the final
infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the
communication layer, and information spreading can effectively raise the epidemic threshold. When
structural correlation exists between the two layers, the information threshold remains unchanged but the
epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We
develop a physical theory to understand the intricate interplay between the two types of spreading dynamics.

E
pidemic spreading1–6 and information diffusion7–10 are two fundamental types of dynamical processes on
complex networks. While traditionally these processes have been studied independently, in real-world
situations there is always coupling or interaction between them. For example, whether large-scale outbreak

of a disease can actually occur depends on the spread of information about the disease. In particular, when the
disease begins to spread initially, individuals can become aware of the occurrence of the disease in their neighbor-
hoods and consequently take preventive measures to protect themselves. As a result, the extent of the disease
spreading can be significantly reduced11–13. A recent example is the wide spread of severe acute respiratory
syndrome (SARS) in China in 2003, where many people took simple but effective preventive measures (e.g.,
by wearing face masks or staying at home) after becoming aware of the disease, even before it has reached their
neighborhoods14. To understand how information spreading can mitigate epidemic outbreaks, and more broadly,
the interplay between the two types of spreading dynamics has led to a new direction of research in complex
network science15.

A pioneering step in this direction was taken by Funk et al., who presented an epidemiological model that takes
into account the spread of awareness about the disease16,17. Due to information diffusion, in a well-mixed
population, the size of the epidemic outbreak can be reduced markedly. However, the epidemic threshold can
be enhanced only when the awareness is sufficiently strong so as to modify the key parameters associated with the
spreading dynamics such as the infection and recovery rates. A reasonable setting to investigate the complicated
interplay between epidemic spreading and information diffusion is to assume two interacting network layers of of
identical set of nodes, one for each type of spreading dynamics. Due to the difference in the epidemic and
information spreading processes, the connection patterns in the two layers can in general be quite distinct.
For the special case where the two-layer overlay networks are highly correlated in the sense that they have
completely overlapping links and high clustering coefficient, a locally spreading awareness triggered by the
disease spreading can raise the threshold even when the parameters in the epidemic spreading dynamics remain
unchanged16,17. The situation where the two processes spread successively on overlay networks was studied with
the finding that the outbreak of information diffusion can constrain the epidemic spreading process18. An
analytical approach was developed to provide insights into the symmetric interplay between the two types of
spreading dynamics on layered networks19. A model of competing epidemic spreading over completely overlap-
ping networks was also proposed and investigated, revealing a coexistence regime in which both types of
spreading can infect a substantial fraction of the network20.

While the effect of information diffusion (or awareness) on epidemic spreading has attracted much recent
interest21–28, many outstanding issues remain. In this paper we address the following three issues. The first
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concerns the network structures that support the two types of spread-
ing dynamics, which were assumed to be identical in some existing
works. However, in reality, the two networks can differ significantly
in their structures. For example, in a modern society, information is
often transmitted through electronic communication networks such
as telephones29 and the Internet30, but disease spreading usually takes
place on a physical contact network31. The whole complex system
should then be modeled as a double-layer coupled network (overlay
network or multiplex network)32–36, where each layer has a distinct
internal structure and the interplay between between the two layers
has diverse characteristics, such as inter-similarity37, multiple sup-
port dependence38, and inter degree-degree correlation39, etc. The
second issue is that the effects of one type of spreading dynamics
on another are typically asymmetric21, requiring a modification of
the symmetric assumption used in a recent work19. For example, the
spread of a disease can result in elevated crisis awareness and thus
facilitate the spread of the information about the disease17, but the
spread of the information promotes more people to take preventive
measures and consequently suppresses the epidemic spreading26.
The third issue concerns the timing of the two types of spreading
dynamics because they usually occur simultaneously on their
respective layers and affect each other dynamically during the same
time period19.

Existing works treating the above three issues separately showed
that each can have some significant effect on the epidemic and
information spreading dynamics16,19,40. However, a unified frame-
work encompassing the sophisticated consequences of all three issues
is lacking. The purpose of this paper is to develop an asymmetrically
interacting spreading-dynamics model to integrate the three issues so
as to gain deep understanding into the intricate interplay between the
epidemic and information spreading dynamics. When all three issues
are taken into account simultaneously, we find that an epidemic
outbreak on the contact layer can induce an outbreak on the com-
munication layer, and information spreading can effectively raise the
epidemic threshold, making the contact layer more resistant to dis-
ease spreading. When inter-layer correlation exists, the information
threshold remains unchanged but the epidemic threshold can be
enhanced, making the contact layer more resilient to epidemic out-
break. These results are established through analytic theory with
extensive numerical support.

Results
In order to present our main results, we describe our two-layer net-
work model and the dynamical process on each layer. We first treat
the case where the double-layer networks are uncorrelated. We then
incorporate layer-to-layer correlation in our analysis.

Model of communication-contact double-layer network. Commu-
nication-contact coupled layered networks are one class of multiplex
networks41. In such a network, an individual (a node) not only
connects with his/her friends on a physical contact layer (subnet-
work), but also communicates with them through the (electronic)
communication layer. The structures of the two layers can in general
be quite different. For example, an indoor-type of individual has few
friends in the real world but may have many friends in the cyber
space, leading to a much higher degree in the communication layer
than in the physical-contact layer. Generally, the degree-to-degree
correlation between the two layers cannot be assumed to be strong.

Our correlated network model of communication-contact layers is
constructed, as follows. Two subnetworks A and B with the same
node set are first generated independently, where A and B denote the
communication and contact layers, respectively. Each layer possesses
a distinct internal structure, as characterized by measures such as the
mean degree and degree distribution. Then each node of layer A is
matched one-to-one with that of layer B according to certain rules.

In an uncorrelated double-layer network, the degree distribution
of one layer is completely independent of the distributions of other
layer. For example, a hub node with a large number of neighbors in
one layer is not necessarily a hub node in the other layer. In contrast,
in a correlated double-layer network, the degree distributions of the
two layers are strongly dependent upon each other. In a perfectly
correlated double-layer network, hub nodes in one layer must simul-
taneously be hub nodes in the other layer. Quantitatively, the
Spearman rank correlation coefficient39,42 ms, where ms g [21, 1]
(see definition in Methods), can be used to characterize the degree
correlation between the two layers. For ms . 0, the greater the cor-
relation coefficient, the larger degree a pair of counterpart nodes can
have. For ms , 0, as jmsj is decreased, a node of larger degree in one
layer is matched with a node of smaller degree in the other layer.

Asymmetrically interacting spreading dynamics. The dynamical
processes of disease and information spreading are typically
asymmetrically coupled with each other. The dynamics component
in our model can be described, as follows. In the communication
layer (layer A), the classic susceptible-infected-recovered (SIR)
epidemiological model43 is used to describe the dissemination of
information about the disease. In the SIR model, each node can be
in one of the three states: (1) susceptible state (S) in which the
individual has not received any information about the disease, (2)
informed state(I), where the individual is aware of disease and is
capable of transmitting the information to other individuals in the
same layer, and (3) refractory state (R), in which the individual has
received the information but is not willing to pass it on to other
nodes. At each time step, the information can propagate from
every informed node to all its neighboring nodes. If a neighbor is
in the susceptible state, it will be informed with probability bA. At the
same time, each informed node can enter the recovering phase with
probability mA. Once an informed node is recovered, it will remain in
this state for all subsequent time. A node in layer A will get the
information about the disease once its counterpart node in layer B
is infected. As a result, dissemination of the information over layer A
is facilitated by disease transmission on layer B.

The spreading dynamics in layer B can be described by the SIRV
model26, in which a fourth sate, the state of vaccination (V), is intro-
duced. Mathematically, the SIR component of the spreading
dynamics is identical to the dynamics on layer A except for different
infection and recovery rates, denoted by bB and mB, respectively. If a
node in layer B is in the susceptible state but its counterpart node in
layer A is in the infected state, the node in layer B will be vaccinated
with probability p. Disease transmission in the contact layer can thus
be suppressed by dissemination of information in the communica-
tion layer. The two spreading processes and their dynamical inter-
play are illustrated schematically in Fig. 1. Without loss of generality,
we set mA 5 mB 5 1.

Theory of spreading dynamics in uncorrelated double-layer
networks. Two key quantities in the dynamics of spreading are the
outbreak threshold and the fraction of infected nodes in the final
steady state. We develop a theory to predict these quantities for both
information and epidemic spreading in the double-layer network. In
particular, we adopt the heterogeneous mean-field theory44 to
uncorrelated double-layer networks.

Let PA(kA) and PB(kB) be the degree distributions of layers A and B,
with mean degree ÆkAæ and ÆkBæ, respectively. We assume that the
subnetworks associated with both layers are random with no degree
correlation. The time evolution of the epidemic spreading is
described by the variables sA

kA
tð Þ, rA

kA
tð Þ, and rA

kA
tð Þ, which are the

densities of the susceptible, informed, and recovered nodes of degree
kA in layer A at time t, respectively. Similarly, sB

kB
tð Þ, rB

kB
tð Þ, rB

kB
tð Þ,

and vB
kB

tð Þ respectively denote the susceptible, infected, recovered,
and vaccinated densities of nodes of degree kB in layer B at time t.
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The mean-field rate equations of the information spreading in
layer A are

dsA
kA

tð Þ
dt

~{sA
kA

tð Þ bAkAHA tð ÞzbBHB tð Þ
X

kB

kBPB kBð Þ
" #

, ð1Þ

drA
kA

tð Þ
dt

~sA
kA

tð Þ bAkAHA tð ÞzbBHB tð Þ
X

kB

kBPB kBð Þ
" #

{rA
kA

tð Þ,ð2Þ

drA
kA

tð Þ
dt

~rA
kA

tð Þ: ð3Þ

The mean-field rate equations of epidemic spreading in layer B are
given by

dsB
kB

tð Þ
dt

~{sB
kB

tð ÞbBkBHB tð Þ{pbAHA tð Þ
X

kA

sA
kA

tð ÞkAPA kAð Þ, ð4Þ

drB
kB

tð Þ
dt

~sB
kB

tð ÞbBkBHB tð Þ{rB
kB

tð Þ, ð5Þ

drB
kB

tð Þ
dt

~rB
kB

tð Þ, ð6Þ

dvB
kB

tð Þ
dt

~pbAHA tð Þ
X

kA

sA
kA

tð ÞkAPA kAð Þ, ð7Þ

where HA(t) (HB(t)) is the probability that a neighboring node in
layer A (layer B) is in the informed (infected) state (See Methods for
details).

From Eqs. (1)–(7), the density associated with each distinct state in
layer A or B is given by

Xh tð Þ~
Xkh, max

kh~1

Ph khð ÞXh
kh

tð Þ, ð8Þ

where h g {A, B}, X g {S, I, R, V}, and kh,max denotes the largest
degree of layer h. The final densities of the whole system can be
obtained by taking the limit t R ‘.

Due to the complicated interaction between the disease and
information spreading processes, it is not feasible to derive the exact
threshold values. We resort to a linear approximation method to get
the outbreak threshold of information spreading in layer A (see
Supporting Information for details) as

bAc~
bAu, for bBƒbBu

0, for bBwbBu,

�
ð9Þ

where

bAu: kAh i
�

k2
A

� �
{ kAh i

� �
and

bBu: kBh i
�

k2
B

� �
{ kBh i

� �
denote the outbreak threshold of information spreading in layer A
when it is isolated from layer B, and that of epidemic spreading
in layer B when the coupling between the two layers is absent,
respectively.

Figure 1 | Illustration of asymmetrically coupled spreading processes on a simulated communication-contact double-layer network. (a)

Communication and contact networks, denoted as layer A and layer B, respectively, each of five nodes. (b) At t 5 0, node B1 in layer B is randomly selected

as the initial infected node and its counterpart, node A1 in layer A, gains the information that B1 is infected, while all other pairs of nodes, one from layer A

and another from layer B, are in the susceptible state. (c) At t 5 1, within layer A the information is transmitted from A1 to A2 with probability bA. Node B3

in layer B can be infected by node B1 with probability bB and, if it is indeed infected, its corresponding node A3 in layer A gets the information as well. Since,

by this time, A2 is already aware of the infection spreading, its counterpart B2 in layer B is vaccinated, say with probability p. At the same time, node A1 in

layer A and its counterpart B1 in layer B enter into the refractory state with probability mA and mB, respectively. (d) At t 5 2, all infected (or informed)

nodes in both layers can no longer infect others, and start recovering from the infection. In both layers, the spreading dynamics terminate by this time.
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Equation (9) has embedded within it two distinct physical
mechanisms for information outbreak. The first is the intrinsic
information spreading process on the isolated layer A without the
impact of the spreading dynamics from layer B. For bB . bBu, the
outbreak of epidemic will make a large number of nodes in layer A
‘‘infected’’ with the information, even if on layer A, the information
itself cannot spread through the population efficiently. In this case,
the information outbreak has little effect on the epidemic spreading
in layer B because very few nodes in this layer are vaccinated. We thus
have bBc < bBu for bA # bAu.

However, for bA . bAu, epidemic spreading in layer B is restrained
by information spread, as the informed nodes in layer A tend to make
their counterpart nodes in layer B vaccinated. Once a node is in the
vaccination state, it will no longer be infected. In a general sense,
vaccination can be regarded as a type of ‘‘disease,’’ as every node in
layer B can be in one of the two states: infected or vaccinated.
Epidemic spreading and vaccination can thus be viewed as a pair
of competing ‘‘diseases’’ spreading in layer B20. As pointed out by
Karrer and Newman20, in the limit of large network size N, the two
competing diseases can be treated as if they were in fact spreading
non-concurrently, one after the other.

Initially, both epidemic and vaccination spreading processes
exhibit exponential growth (see Supporting Information). We can
thus obtain the ratio of their growth rates as

h~
bBbAu

bAbBu
: ð10Þ

For h . 1, the epidemic disease spreads faster than the vaccination.
In this case, the vaccination spread is insignificant and can be
neglected. For h , 1, information spreads much faster than the
disease, in accordance with the situation in a modern society.
Given that the vaccination and epidemic processes can be treated
successively and separately, the epidemic outbreak threshold can be
derived by a bond percolation analysis20,45 (see details in Supporting
Information). We obtain

bBc~
kBh i

1{pSAð Þ k2
Bh i{ kBh ið Þ , ð11Þ

where SA is the density of the informed population, which can be
obtained by solving Eqs. (S18) and (S19) in Supporting Information.
For h , 1, we see from Eq. (11) that the threshold for epidemic
outbreak can be enhanced by the following factors: strong hetero-
geneity in the communication layer, large information-transmission
rate, and large vaccination rate.

Simulation results for uncorrelated networks. We use the standard
configuration model to generate networks with power-law degree
distributions46–48 for the communication subnetwork (layer A).
The contact subnetwork in layer B is of the Erdős and Rényi (ER)
type49. We use the notation SF-ER to denote the double-layer
network. The sizes of both layers are set to be NA 5 NB 5 2 3 104

and their average degrees are ÆkAæ 5 ÆkBæ 5 8. The degree distribution
of the communication layer is PA kAð Þ~fk{cA

A with the coefficient

f~1
.Xkmax

kmin
k{cA

A and the maximum degree kmax*N1= cA{1ð Þ. We

focus on the case of cA 5 3.0 here in the main text (the results for
other values of the exponent, e.g., cA 5 2.7 and 3.5, are similar, which
are presented in Supporting Information). The degree distribution

of the contact layer is PB kBð Þ~e{ kBh i kBh ikB

.
kB!. To initiate an

epidemic spreading process, a node in layer B is randomly infected
and its counterpart node in layer A is thus in the informed state, too.
We implement the updating process with parallel dynamics, which is
widely used in statistical physics50 (see Sec. S3A in Supporting
Information for more details). The spreading dynamics terminates

when all infected nodes in both layers are recovered, and the final
densities RA, RB, and VB are then recorded.

For epidemiological models [e.g., the susceptible-infected-sus-
ceptible (SIS) and SIR] on networks with a power-law degree distri-
bution, the finite-size scaling method may not be effective to
determine the critical point of epidemic dynamics51,52, because the
outbreak threshold depends on network size and it goes to zero in the
thermodynamic limit43,53. Therefore, we employ the susceptibility
measure52 x to numerically determine the size-dependent outbreak
threshold:

x~N
r2h i{ rh i2

rh i , ð12Þ

where N is network size (N 5 NA 5 NB), and r denotes the final
outbreak ratio such as the final densities RA and RB of the recovered
nodes in layers A and B, respectively. We use 2 3 103 independent
dynamic realizations on a fixed double-layer network to calculate the
average value of x for the communication layer for each value of bA.
As shown in Fig. 2(a), x exhibits a maximum value at bAc, which is the
threshold value of the information spreading process. The simula-
tions are further implemented using 30 different two-layer network
realizations to obtain the average value of bAc. The identical simu-
lation setting is used for all subsequent numerical results, unless
otherwise specified. Figure 2(b) shows the information threshold
bAc as a function of the disease-transmission rate bB. Note that the
statistical errors are not visible here (same for similar figures in the
paper), as they are typically vanishingly small. We see that the beha-
vior of the information threshold can be classified into two classes, as
predicted by Eq. (9). In particular, for bB # bBu 5 1/ÆkBæ 5 0.125, the
disease transmission on layer B has little impact on the information
threshold on layer A, as we have bAc<bAu~ kAh i

�
k2

A

� �
{ kAh i

� �
<0:06. For bB . bBu, the outbreak of epidemic on layer B leads to
bAc 5 0.0. Comparison of the information thresholds for different
vaccination rates shows that the value of the vaccination probability p
has essentially no effect on bAc.

Figure 2 | The identification of epidemic threshold on SF-ER networks.
(a) The susceptibility measure x as a function of the information-

transmission rate bA for p 5 0.5, bB 5 0.0 (red squares) and bB 5 0.1 (green

circles), (b) the threshold bAc of information spreading as a function of the

disease-transmission rate bB for vaccination rate p 5 0.5 (red squares) and

p 5 0.9 (green circles), where the red solid lines are analytical predictions

from Eq. (9).
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Figure 3 shows the effect of the information-transmission rate bA

and the vaccination rate p on the epidemic threshold bBc. From
Fig. 3(a), we see that the value of bBc is not influenced by bA for bA

# bAu < 0.06, whereas bBc increases with bA. For p 5 0.5, the
analytical results from Eq. (11) are consistent with the simulated
results. However, deviations occur for larger values of p, e.g., p 5

0.9, because the effect of information spreading is over-emphasized
in cases where the two types of spreading dynamics are treated suc-
cessively but not simultaneously. The gap between the theoretical
and simulated thresholds diminishes as the network size is increased,
validating applicability of the analysis method that, strictly speaking,
holds only in the thermodynamic limit20 (see details in Supporting
Information). Note that a giant residual cluster does not exist in layer
B for p 5 0.9 and bA $ 0.49, ruling out epidemic outbreak. The phase
diagram indicating the possible existence of a giant residual cluster
[Eq. (S20) in Supporting Information] is shown in the inset of
Fig. 3(a), where in phase II, there is no such cluster. In Fig. 3(b), a
large value of p causes bBc to increase for bA . bAu. We observe that,
similar to Fig. 3(a), for relatively large values of p, say p $ 0.8, the
analytical prediction deviates from the numerical results. The effects
of network size N, exponent cA and SF-SF network structure on the
information and epidemic thresholds are discussed in detail in
Supporting Information.

The final dynamical state of the double-layer spreading system is
shown in Fig. 4. From Fig. 4(a), we see that the final recovered density
RA for information increases with bA and bB rapidly for bA # bAu and
bB # bBu. Figure 4(b) reveals that the recovered density RB for disease
decreases with bA. We see that a large value of bA can prevent the
outbreak of epidemic for small values of bB, as RB R 0 for bB 5 0.2
and bA $ 0.5 (the red solid line). From Fig. 4(c), we see that, with the
increase in bA, more nodes in layer B are vaccinated. It is interesting
to note that the vaccinated density VB exhibits a maximum value if bA

is not large. Figure 4 shows that the maximum value of VB is about
0.32, which occurs at bB < 0.20, for bA 5 0.2. Combining with
Fig. 3(a), we find that the corresponding point of the maximum value
bB < 0.20 is close to bBc < 0.16 for p 5 0.5. This is because the
transmission of disease has the opposite effects on the vaccinations.
For bB # bBc, the newly infected nodes in layer B will facilitate
information spreading in layer A, resulting in more vaccinated
nodes. For bB . bBc, the epidemic spreading will make a large num-
ber of nodes infected, reducing the number of nodes that are poten-
tially to be vaccinated. For relatively large values of bA, information
tends to spread much faster than the disease for bB # bBc, e.g., h <
0.21 for bA 5 0.5, p 5 0.5, bBc < 0.22, and h < 0.12 for bA 5 0.9, p 5

0.5, and bBc < 0.23. In this case, the effect of disease transmission on
information spreading is negligible. The densities of the final dynam-
ical states for SF-SF networks are also shown in Supporting
Information, and we observe similar behaviors.

Spreading dynamics on correlated double-layer networks. In rea-
listic multiplex networks certain degree of inter-layer correlations is
expected to exist35. For example, in social networks, positive inter-
layer correlation is more common than negative correlation54,55. That
is, an ‘‘important’’ individual with a large number of links in one
network layer (e.g., representing one type of social relations) tends to
have many links in other types of network layers that reflect different
kinds of social relations. Recent works have shown that inter-layer
correlation can have a large impact on the percolation properties of
multiplex networks37,39. Here, we investigate how the correlation
between the communication and contact layers affects the informa-
tion and disease spreading dynamics. To be concrete, we focus on the
effects of positive correlation on the two types of spreading dynamics.
It is necessary to construct a two-layer correlated network with
adjustable degree of inter-layer correlation. This can be accomp-
lished by first generating a two-layer network with the maximal
positive correlation, where each layer has the same structure as
uncorrelated networks. Then, Nq pairs of counterpart nodes, in

Figure 3 | For SF-ER double-layer networks, epidemic threshold bBc as a
function of the information-transmission rate bA (a) and the vaccination
rate p (b). In (a), the red solid (p 5 0.5) and green dashed (p 5 0.9) lines are

the analytical predictions from Eq. (11), and the blue dot-dashed line

denotes the case of h 5 1 from Eq. (10). The inset of (a) shows the

condition under which a giant residual cluster of layer B exists [from Eq.

(S20) in Supporting Information] in phase I. In (b), the red solid line (bA 5

0.05) corresponds to bBc 5 bBu, and the green dashed line (bA 5 0.20) is the

analytical prediction from Eq. (11).

Figure 4 | For SF-ER networks, the final density in each state versus the
parameters bA and bB: (a) recovered density RA, (b) recovered density RB,
(c) the vaccination density VB, and (d) VB versus bB for bA 5 0.2, 0.5, 0.9.
The value of parameter p is 0.5. Different lines are the numerical solutions

of Eqs. (1) – (8) in the limit t R ‘. In (a) and (d), we select three different

values of bA (0.2, 0.5, and 0.9), corresponding to the red solid, green

dashed, and blue dot-dashed lines, respectively. In (b) and (c), three

different values of bB are chosen (0.2, 0.5, and 0.9), corresponding to the

red solid, green dashed, and blue dot-dashed lines, respectively.
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which q is the rematching probability, are rematched randomly,
leading to a two-layer network with weaker inter-layer correlation.
The inter-layer correlation after rematching is given by (see
Methods)

ms<1{q, ð13Þ

which is consistent with the numerical results [e.g., see inset of
Fig. 5(a) below]. For SF-ER networks with fixed correlation coeffi-
cient, the mean-field rate equations of the double-layer system
cannot be written down because the concrete expressions of the
conditional probabilities P(kBjkA) and P(kAjkB) are no longer
available.

We investigate how the rematching probability q affects the out-
break thresholds in both the communication and epidemic layers. As
shown in Fig. 5, we compare the case of q 5 0.8 with that of q 5 0.0.
From Fig. 5(a), we see that q has little impact on the outbreak thresh-
old bAc of the communication layer [with further support in Fig. 6(a),
and analytic explanation using ER-ER correlated layered networks in
Supporting Information]. We also see that the value of bAc for ER-ER
layered networks with the same mean degree is greater because of the
homogeneity in the degree distribution of layer A. Figures 5(b) and
6(b) show that bBc decreases with q or, equivalently, bBc increases
with ms. This is because stronger inter-layer correlation can increase
the probability for nodes with large degrees in layer B to be vacci-
nated, thus effectively preventing the outbreak of epidemic [see also
Eqs. (S38)–(S41) in Supporting Information]. Figure 7 shows the
final densities of different populations, providing the consistent

result that, with the increase (decrease) of q (ms), the final densities
RA and RB increase but the density VB decreases. For SF-SF networks,
we obtain similar results (shown in Supporting Information).

Discussion
To summarize, we have proposed an asymmetrically interacting,
double-layer network model to elucidate the interplay between
information diffusion and epidemic spreading, where the former
occurs on one layer (the communication layer) and the latter on
the counterpart layer. A mean-field based analysis and extensive
computations reveal an intricate interdependence of two basic
quantities characterizing the spreading dynamics on both layers:
the outbreak thresholds and the final fractions of infected nodes.
In particular, on the communication layer, the outbreak of the
information about the disease can be triggered not only by its own
spreading dynamics but also by the the epidemic outbreak on the
counter-layer. In addition, high disease and information-transmis-
sion rates can enhance markedly the final density of the informed or
refractory population. On the layer of physical contact, the epidemic
threshold can be increased but only if information itself spreads

Figure 5 | For two-layer correlated networks with vaccination probability
p 5 0.5, the effect of one type of spreading dynamics on the outbreak
threshold of the counter-type spreading dynamics. (a) bAc versus bB on

SF-ER networks with q 5 0.0 (red squares) and q 5 0.8 (green circles), and

ER-ER networks with q 5 0.0 (blue up triangles) and q 5 0.8 (orange down

triangles). Red solid (SF-ER) and blue dashed (ER-ER) lines are the

analytical predictions from Eq. (9) and Eq. (S37) (in Supporting

Information), respectively. The inset shows the inter-layer correlation ms

as a function of rematching probability q. (b) bBc versus bA on SF-ER

networks with q 5 0.0 (red squares) and q 5 0.8 (green circles), and ER-ER

networks with q 5 0.0 (blue up triangles) and q 5 0.8 (orange down

triangles). Blue solid (q 5 0.0) and orange dashed (q 5 0.8) lines are the

analytical predictions for ER-ER networks from Eqs. (S38) – (S41) in

Supporting Information.

Figure 6 | Effect of varying the rematching probability on outbreak
thresholds of the two types of spreading dynamics. (a) bAc versus q on SF-

ER (red squares) and ER-ER networks (green circles) for bB 5 0.05 and p 5

0.5. Red Solid (SF-ER) and green dashed (ER-ER) lines are analytical

predictions from Eq. (9) and Eq. (S37) in Supporting Information,

respectively. (b) bBc versus q on SF-ER (red squares) and ER-ER networks

(green circles) for bA 5 0.2 and p 5 0.5. Green solid line is analytical

prediction for ER-ER networks from Eqs. (S38) – (S41) in Supporting

Information.

Figure 7 | Effect of rematching probability on the final state. (a) RA versus

q on SF-ER (red squares) and ER-ER networks (blue up triangles), RB

versus q on SF-ER (green circles) and ER-ER networks (orange down

triangles). (b) VB versus q on SF-ER (red squares) and ER-ER networks

(green circles). Different lines represent the analytic solutions for ER-ER

networks, calculated by summing the final densities of all degrees from Eqs.

(S28) – (S34) in Supporting Information. The parameter setting is bA 5

0.2, bB 5 0.4 and p 5 0.5.
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through the communication layer at a high rate. The information
spreading can greatly reduce the final refractory density for the dis-
ease through vaccination. While a rapid spread of information will
prompt more nodes in the contact layer to consider immunization,
the authenticity of the information source must be verified before
administrating large-scale vaccination.

We have also studied the effect of inter-layer correlation on the
spreading dynamics, with the finding that stronger correlation has no
apparent effect on the information threshold, but it can suppress the
epidemic spreading through timely immunization of large-degree
nodes56. These results indicate that it is possible to effectively mitigate
epidemic spreading through information diffusion, e.g., by inform-
ing the high-centrality hubs about the disease.

The challenges of studying the intricate interplay between social
and biological contagions in human populations are generating
interesting science57. In this work, we study asymmetrically interact-
ing information-disease dynamics theoretically and computation-
ally, with implications to behavior-disease coupled systems and
articulation of potential epidemic-control strategies. Our results
would stimulate further works in the more realistic situation of asym-
metric interactions.

During the final writing of this paper, we noted one preprint
posted online studying the dynamical interplay between awareness
and epidemic spreading in multiplex networks58. In that work, the
two competing infectious strains are described by two SIS processes.
The authors find that the epidemic threshold depends on the topo-
logical structure of the multiplex network and the interrelation with
the awareness process by using a Markov-chain approach. Our work
thus provides further understanding and insights into spreading
dynamics on multi-layer coupled networks.

Methods
Mean-Field theory for the uncorrelated double-layer networks. To derive the
mean-field rate equations for the density variables, we consider the probabilities that
node Ai in layer A and node Bi in layer B become infected during the small time
interval [t, t 1 dt]. On the communication layer, a susceptible node Ai of degree kA

can obtain the information in two ways: from its neighbors in the same layer and from
its counterpart node in layer B. For the first route, the probability that node Ai receives
information from one of its neighbors is kAbAHA(t)dt, where HA(t) is the probability
that a neighboring node is in the informed state59 and is given by

HA tð Þ~
P

K ’A k’A{1ð ÞPA k’Að ÞrA
k’A

tð Þ
kAh i

, ð14Þ

where kAh i~
X

kA
kAPA kAð Þ. To model the second scenario, we note that, due to the

asymmetric coupling between the two layers, a node in layer A being susceptible
requires that its counterpart node in layer B be susceptible, too. A node in the
communication layer will get the information about the disease once its counterpart
node in layer B is infected, which occurs with the probabilityX

kB
P kBjkAð ÞkBbBHB tð Þdt, where P(kBjkA) denotes the conditional probability that

a node of degree kA in layer A is linked to a node of degree kB in layer B, and
kBbBHB(t)dt is the probability for a counterpart node of degree kB to become infected
in the time interval [t, t 1 dt]. If the subnetworks in both layers are not correlated, we
have P(kBjkA) 5 PB(kB). The mean-field rate equations of the information spreading
in layer A are Eqs. (1)–(3).

On layer B, a susceptible node Bi of degree kB may become infected or vaccinated in
the time interval [t, t 1 dt]. This can occur in two ways. Firstly, it may be infected by a
neighboring node in the same layer with the probability kBbBHB(t)dt, where HB(t) is
the probability that a neighbor is in the infected state and is given by

HB tð Þ~
P

k’B k’B{1ð ÞPB k’Bð ÞrB
k’B tð Þ

kBh i
, ð15Þ

where kBh i~
X

kB
kBPB kBð Þ. Secondly, if its counterpart node in layer A has already

received the information from one of its neighbors, it will be vaccinated with prob-
ability p. The probability for a node in layer B to be vaccinated, taking into account the
interaction between the two layers, is p

X
kA

P kAjkBð ÞsA
kA

tð ÞbAkAHA tð Þdt, where

P(kAjkB) denotes the conditional probability that a node of degree kB in layer B is
linked to a node of degree kA in layer A, and sA

kA
tð ÞbAkAHA tð Þdt is the informed

probability for the counterpart node of degree kA in the susceptible state [P(kAjkB) 5

PA(kA) for ms 5 0]. The mean-field rate equations of epidemic spreading in layer B are
Eqs. (4) – (7). We note that the second term on the right side of Eq. (4) does not

contain the variable sB
kB

(t) because a node in layer B must be in the susceptible state if
its counterpart node in layer A is in the susceptible state.

Spearman rank correlation coefficient. The correlation between the layers can be
quantified by the Spearman rank correlation coefficient39,42 defined as

ms~1{6

PN
i~1 D

2
i

N N2{1ð Þ , ð16Þ

where N is network size and Di denotes the difference between node i’s degrees in the
two layers. When a node in layer A is matched with a random node in layer B, ms is
approximately zero in the thermodynamic limit. In this case, the double-layer
network is uncorrelated39,42. When every node has the same rank of degree in both
layers, we have ms < 1. In this case, there is a maximally positive inter-layer
correlation where, for example, the hub node with the highest degree in layer A is
matched with the largest hub in layer B, and the same holds for the nodes with the
smallest degree. In the case of maximally negative correlation, the largest hub in one
layer is matched with a node having the minimal degree in the other layer, so we have
ms < 21.

In a double-layer network with the maximally positive correlation, any pair of
nodes having the same rank of degree in the respective layers are matched, i.e., Di 5 0
for any pair of nodes Ai and Bi. We thus have ms 5 1, according to Eq. (16). After
random rematching, a pair of nodes have Di 5 0 with probability 1 2 q and a random
difference D’i with probability q. Equation (16) can then be rewritten as

ms~1{6
q
PN

i~1 D’i
2

N N2{1ð Þ : ð17Þ

When all nodes are randomly rematched, the layers in the network are completely
uncorrelated, i.e., ms < 0. In this case, we have

6

PN
i~1 D’i

2

N N2{1ð Þ<1: ð18Þ

Submitting Eq. (18) into Eq. (17), the inter-layer correlation after rematching is given
by

ms<1{q: ð19Þ
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