543 research outputs found

    {6-[2,5-Bis(chloro­meth­yl)-3,4-dihydroxy­tetra­hydro­furan-2-yl­oxy]-3-chloro-4,5-dihydr­oxy-3,4,5,6-tetra­hydro-2H-pyran-2-yl}methyl acetate dihydrate

    Get PDF
    The title compound, C14H21Cl3O9·2H2O, is a disaccharide constructed from a galactose and a fructose. In the mol­ecular structure, the tetra­hydro­furan five-membered ring and tetra­hydro­pyran six-membered ring assume envelope and chair conformations, respectively. An extensive O—H⋯O hydrogen-bonding network occurs in the crystal structure

    Arbitrarily primed sequence-related amplified polymorphism (AP-SRAP)

    Get PDF
    Sequence-related amplified polymorphism (SRAP) is a new-type molecular technique that targets coding sequences in the genome and results in a moderate number of co-dominant markers. Based on the SRAP program, the random primer combinations of SRAP, amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) were used as new primers in marker analysis. We defined this technique as arbitrarily primed sequence-related amplified polymorphism (AP-SRAP). Of 256 tested AP-SRAP primers, 37.6% primers produced polymorphic patterns from the DNA of one or more species, which showed that AP-SRAP is an effective method to screen markers. Additionally, 80 SRAP primers were used to screen markers in seven plant species (Chinese cabbage, Chinese kale, eggplant, pepper, cucumber, rose and lily), which indicated obvious polymorphism. The primers of AP-SRAP combine simply and reliably. It can overcome the limitation of the number of standard SRAP primers, make greater use of the supply of alternative primers, and potentially reduce laboratory costs. We expect that AP-SRAP may be of wide application in identity testing, population studies, linkage analysis and genome mapping.Keywords: Arbitrarily primed amplification, DNA markers, plantsAfrican Journal of Biotechnology Vol. 12(29), pp. 4588-459

    Glycogen synthase kinase-3β inactivation inhibits tumor necrosis factor-α production in microglia by modulating nuclear factor κB and MLK3/JNK signaling cascades

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deciphering the mechanisms that modulate the inflammatory response induced by microglial activation not only improves our insight into neuroinflammation but also provides avenues for designing novel therapies that could halt inflammation-induced neuronal degeneration. Decreasing glycogen synthase kinase-3β (GSK-3β) activity has therapeutic benefits in inflammatory diseases. However, the exact molecular mechanisms underlying GSK-3β inactivation-mediated suppression of the inflammatory response induced by microglial activation have not been completely clarified. Tumor necrosis factor-α (TNF-α) plays a central role in injury caused by neuroinflammation. We investigated the regulatory effect of GSK-3β on TNF-α production by microglia to discern the molecular mechanisms of this modulation.</p> <p>Methods</p> <p>Lipopolysaccharide (LPS) was used to induce an inflammatory response in cultured primary microglia or murine BV-2 microglial cells. Release of TNF-α was measured by ELISA. Signaling molecules were analyzed by western blotting, and activation of NF-κB and AP-1 was measured by ELISA-based DNA binding analysis and luciferase reporter assay. Protein interaction was examined by coimmunoprecipitation.</p> <p>Results</p> <p>Inhibition of GSK-3β by selective GSK-3β inhibitors or by RNA interference attenuated LPS-induced TNF-α production in cultured microglia. Exploration of the mechanisms by which GSK-3β positively regulates inflammatory response showed that LPS-induced IκB-α degradation, NF-κBp65 nuclear translocation, and p65 DNA binding activity were not affected by inhibition of GSK-3β activity. However, GSK-3β inactivation inhibited transactivation activity of p65 by deacetylating p65 at lysine 310. Furthermore, we also demonstrated a functional interaction between mixed lineage kinase 3 (MLK3) and GSK-3β during LPS-induced TNF-α production in microglia. The phosphorylated levels of MLK3, MKK4, and JNK were increased upon LPS treatment. Decreasing GSK-3β activity blocked MLK3 signaling cascades through disruption of MLK3 dimerization-induced autophosphorylation, ultimately leading to a decrease in TNF-α secretion.</p> <p>Conclusion</p> <p>These results suggest that inactivation of GSK-3β might represent a potential strategy to downregulate microglia-mediated inflammatory processes.</p

    Engulfing cells promote neuronal regeneration and remove neuronal debris through distinct biochemical functions of CED-1

    Get PDF
    Two important biological events happen coincidently soon after nerve injury in the peripheral nervous system in C. elegans: removal of axon debris and initiation of axon regeneration. But, it is not known how these two events are co-regulated. Mutants of ced-1, a homolog of Draper and MEGF10, display defects in both events. One model is that those events could be related. But our data suggest that they are actually separable. CED-1 functions in the muscle-type engulfing cells in both events and is enriched in muscle protrusions in close contact with axon debris and regenerating axons. Its two functions occur through distinct biochemical mechanisms; extracellular domain-mediated adhesion for regeneration and extracellular domain binding-induced intracellular domain signaling for debris removal. These studies identify CED-1 in engulfing cells as a receptor in debris removal but as an adhesion molecule in neuronal regeneration, and have important implications for understanding neural circuit repair after injury

    Resveratrol Downregulates Interleukin-6-Stimulated Sonic Hedgehog Signaling in Human Acute Myeloid Leukemia

    Get PDF
    IL-6 and sonic hedgehog (Shh) signaling molecules are considered to maintain the growth of cancer stem cells (CSCs). Resveratrol, an important integrant in traditional Chinese medicine, possesses certain antitumor effects. However, the mechanisms on regulating acute myeloid leukemia (AML) are unclear. This study first used human subjects to demonstrate that the plasma levels of IL-6 and IL-1β in AML patients were higher and lower, respectively, than healthy donors. The expression of Shh preproproteins, and C- and N-terminal Shh peptides increased in bone marrow and peripheral blood mononuclear cells isolated from AML patients, and the plasma N-Shh secretion was greater. To further clarify the effect of IL-6 and resveratrol in Shh signaling, human AML HL-60 cells were tested. IL-6 upregulated Shh and Gli-1 expression and was accompanied by an increase of cell viability. Resveratrol significantly decreased CSC-related Shh expression, Gli-1 nuclear translocation, and cell viability in IL-6-treated HL-60 cells and had synergistic effect with Shh inhibitor cyclopamine on inhibiting cell growth. Conclusions. IL-6 stimulated the growth of AML cells through Shh signaling, and this effect might be blocked by resveratrol. Further investigations of Shh as a prognostic marker and resveratrol as a therapeutic drug target to CSCs in AML are surely warranted

    Long-term Characteristics of Healthcare-associated Infections in a Neonatal Intensive Care Unit

    Get PDF
    Background/PurposeHealthcare-associated infections in neonatal intensive care units (NICUs) are associated with a significant risk of morbidity and mortality. Knowledge regarding pathogens, primary sources of infection and antibiotic resistance in the NICU is essential for developing management strategies. This study aimed to analyze the long-term characteristics of healthcare-associated infections in a tertiary referral center in southern Taiwan.MethodsInfants < 30 days old, with positive blood, cerebrospinal fluid, urine or tissue fluid cultures during hospitalization in the NICU of National Cheng Kung University Hospital from July 1989 to June 2008 were included in the study.ResultsIn total, 1,417 organisms and episodes were identified during the study period. Gram-positive organisms, Gram-negative organisms and fungi constituted 923 (65.1%), 358 (25.3%) and 136 (9.6%) of the pathogens, respectively. Of the Gram-positive organisms, coagulase-negative staphylococci (51.5%), Staphylococcus aureus (34.8%) and Enterococcus spp. (6.1%) were the major pathogens; and 27% of Staphylococcus aureus isolates were oxacillin-resistant. For the Gram-negative organisms, Klebsiella pneumoniae (22%), Pseudomonas aeruginosa (21.8%), Escherichia coli (16.7%) and Enterobacter cloacae (16.7%) were dominant. Also, Candida albicans accounted for 50% of fungal infections. The most common source of infection was bloodstream infection (59.0%), and 5.6% of these were catheter-related. Skin and soft tissue infections were also frequent (26.3%).ConclusionBloodstream and skin/soft tissue infections caused by commensal species play an important role in healthcare-associated infections in the NICU. New measures should be developed in response to the changing patterns in the NICU

    The versatile application of cervicofacial and cervicothoracic rotation flaps in head and neck surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The large defects resulting from head and neck tumour surgeries present a reconstructive challenge to surgeons. Although numerous methods can be used, they all have their own limitations. In this paper, we present our experience with cervicofacial and cervicothoracic rotation flaps to help expand the awareness and application of this useful system of flaps.</p> <p>Methods</p> <p>Twenty-one consecutive patients who underwent repair of a variety of defects of the head and neck with cervicofacial or cervicothoracic flaps in our hospital from 2006 to 2009 were retrospectively analysed. Statistics pertaining to the patients' clinical factors were gathered.</p> <p>Results</p> <p>Cheek neoplasms are the most common indication for cervicofacial and cervicothoracic rotation flaps, followed by parotid tumours. Among the 12 patients with medical comorbidities, the most common was hypertension. Defects ranging from 1.5 cm × 1.5 cm to 7 cm × 6 cm were reconstructed by cervicofacial flap, and defects from 3 cm × 2 cm to 16 cm × 7 cm were reconstructed by cervicothoracic flap. The two flaps also exhibited versatility in these reconstructions. When combined with the pectoralis major myocutaneous flap, the cervicothoracic flap could repair through-and-through cheek defects, and in combination with a temporalis myofacial flap, the cervicofacial flap was able to cover orbital defects. Additionally, 95% patients were satisfied with their resulting contour results.</p> <p>Conclusions</p> <p>Cervicofacial and cervicothoracic flaps provide a technically simple, reliable, safe, efficient and cosmetic means to reconstruct defects of the head and neck.</p
    corecore