16,217 research outputs found

    Residual proton-neutron interactions and the NpNnN_{\rm p} N_{\rm n} scheme

    Full text link
    We investigate the correlation between integrated proton-neutron interactions obtained by using the up-to-date experimental data of binding energies and the NpNnN_{\rm p} N_{\rm n}, the product of valence proton number and valence neutron number with respect to the nearest doubly closed nucleus. We make corrections on a previously suggested formula for the integrated proton-neutron interaction. Our results demonstrate a nice, nearly linear, correlation between the integrated p-n interaction and NpNnN_{\rm p} N_{\rm n}, which provides us with a firm foundation of the applicability of the NpNnN_{\rm p} N_{\rm n} scheme to nuclei far from the stability line.Comment: four pages, three figures, Physical Review C, in pres

    The Forecasting Capacity of Housing Price Expectations

    Get PDF
    This study captures the essential elements of the price expectations of market participants in a rising market. Adopting a forward-looking approach, this paper explores the effectiveness of expectations as an indicator of forthcoming housing price changes in Hong Kong. Examination of the quarterly survey data from December 2003 to September 2007 indicates that both homeowners and non-homeowners tend to overestimate the probability of future housing price increases yet underestimate its volatility. This adds weight to the argument that market participants are generally not rational in the prediction of price movement. Homeowners, investors and potential home buyers have more or less the same level of confidence about the future market outlook. Like non-owners, they expect higher prices. The number of correct forecasts exceeds incorrect forecasts, suggesting that overall price expectations are fairly close to realization. It can be broadly concluded that the aggregate price expectations in the long run can be an appropriate forecasting tool for future market performance.Price expectations; Forecastability; Housing market; Hong Kong

    Cosmological Reionization by Stellar Sources

    Get PDF
    I use cosmological simulations that incorporate a physically motivated approximation to three-dimensional radiative transfer that recovers correct asymptotic ionization front propagation speeds for some cosmologically relevant density distributions transfer to investigate the process of the reionization of the universe by ionizing radiation from proto-galaxies. Reionization proceeds in three stages and occupies a large redshift range from z~15 until z~5. During the first, ``pre-overlap'' stage, HII regions gradually expand into the low density IGM, leaving behind neutral high density protrusions. During the second, ``overlap'' stage, that occurs in about 10% of the Hubble time, HII regions merge and the ionizing background rises by a large factor. During the third, ``post-overlap'' stage, remaining high density regions are being gradually ionized as the required ionizing photons are being produced. Residual fluctuations in the ionizing background reach significant (more than 10%) levels for the Lyman-alpha forest absorption systems with column densities above 10^14 - 10^15 cm^-2 at z=3 to 4.Comment: Revised version accepted for publication in ApJ. Color versions of Fig. 3a-h in GIF format, full (unbinned) versions of Fig. 5, 6, and 13, as well as MPEG animations are available at http://casa.colorado.edu/~gnedin/GALLERY/rei_p.htm

    Technique of quantum state transfer for a double Lambda atomic beam

    Full text link
    The transfer technique of quantum states from light to collective atomic excitations in a double Λ\Lambda type system is extended to matter waves in this paper, as a novel scheme towards making a continuous atom laser. The intensity of the output matter waves is found to be determined by the initial relative phase of the two independent coherent probe lights, which may indicate an interesting method for the measurement of initial relative phase of two independent light sources.Comment: 5 pages, 2 figure

    Why People Forward Emails to Others?

    Get PDF
    The issue of electronic mail (e-mail) communication has attracted much academic attention over the last two decades. Yet, little is known about why people forward emails to others. Through a review of the literature, this paper aims to investigate reasons why people forward emails and proposes several variables related to one\u27s intention of doing so. More specifically, we hypothesize that the higher degree the four possible variables are (the recipient’s trust in the email content, the recipient\u27s trust in the senders, intention to staying in touch with friends, and the receivers\u27 altruism trait), the more likely people will forward emails. On the other hand, we hypothesize that the lower degree the two possible variables are (the size of email file, and the cost of forwarding e-mail), the less likely people will forward emails

    Scale-free networks with tunable degree distribution exponents

    Full text link
    We propose and study a model of scale-free growing networks that gives a degree distribution dominated by a power-law behavior with a model-dependent, hence tunable, exponent. The model represents a hybrid of the growing networks based on popularity-driven and fitness-driven preferential attachments. As the network grows, a newly added node establishes mm new links to existing nodes with a probability pp based on popularity of the existing nodes and a probability 1p1-p based on fitness of the existing nodes. An explicit form of the degree distribution P(p,k)P(p,k) is derived within a mean field approach. For reasonably large kk, P(p,k)kγ(p)F(k,p)P(p,k) \sim k^{-\gamma(p)}{\cal F}(k,p), where the function F{\cal F} is dominated by the behavior of 1/ln(k/m)1/\ln(k/m) for small values of pp and becomes kk-independent as p1p \to 1, and γ(p)\gamma(p) is a model-dependent exponent. The degree distribution and the exponent γ(p)\gamma(p) are found to be in good agreement with results obtained by extensive numerical simulations.Comment: 12 pages, 2 figures, submitted to PR

    Network Inoculation: Heteroclinics and phase transitions in an epidemic model

    Get PDF
    In epidemiological modelling, dynamics on networks, and in particular adaptive and heterogeneous networks have recently received much interest. Here we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description one of these corresponds to a local bifurcation whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation. In the respective parameter region exposure of the system to a pathogen will lead to an outbreak that collapses, but leaves the network in a configuration where the disease cannot reinvade, despite every agent returning to the susceptible class. We argue that this behaviour and the associated phase transitions can be expected to occur in a wide class of models of sufficient complexity.Comment: 26 pages, 11 figure

    Spectrum of Relativistic and Subrelativistic Cosmic Rays in the 100 pc Central Region

    Get PDF
    From the rate of hydrogen ionization and the gamma ray flux, we derived the spectrum of relativistic and subrelativistic cosmic rays (CRs) nearby and inside the molecular cloud Sgr B2 near the Galactic Center (GC). We studied two cases of CR propagation in molecular clouds: free propagation and scattering of particles by magnetic fluctuations excited by the neutral gas turbulence. We showed that in the latter case CR propagation inside the cloud can be described as diffusion with the coefficient 3×1027\sim 3\times 10^{27} cm2^2 s1^{-1}. For the case of hydrogen ionization by subrelativistic protons, we showed that their spectrum outside the cloud is quite hard with the spectral index δ>1\delta>-1. The energy density of subrelativistic protons (>50>50 eV cm3^{-3}) is one order of magnitude higher than that of relativistic CRs. These protons generate the 6.4 keV emission from Sgr B2, which was about 30\% of the flux observed by Suzaku in 2013. Future observations for the period after 2013 may discover the background flux generated by subrelativistic CRs in Sgr B2. Alternatively hydrogen ionization of the molecular gas in Sgr B2 may be caused by high energy electrons. We showed that the spectrum of electron bremsstrahlung is harder than the observed continuum from Sgr B2, and in principle this X-ray component provided by electrons could be seen from the INTEGRAL data as a stationary high energy excess above the observed spectrum Ex2E_x^{-2}.Comment: 42 pages, 6 figures, accepted by Ap
    corecore