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ABSTRACT

From the rate of hydrogen ionization and the gamma ray flux, we derived the

spectrum of relativistic and subrelativistic cosmic rays (CRs) nearby and inside

the molecular cloud Sgr B2 near the Galactic Center (GC). We studied two cases

of CR propagation in molecular clouds: free propagation and scattering of parti-

cles by magnetic fluctuations excited by the neutral gas turbulence. We showed

that in the latter case CR propagation inside the cloud can be described as diffu-

sion with the coefficient ∼ 3× 1027 cm2 s−1. For the case of hydrogen ionization

by subrelativistic protons, we showed that their spectrum outside the cloud is

quite hard with the spectral index δ > −1. The energy density of subrelativistic

protons (> 50 eV cm−3) is one order of magnitude higher than that of relativis-

tic CRs. These protons generate the 6.4 keV emission from Sgr B2, which was

about 30% of the flux observed by Suzaku in 2013. Future observations for the

period after 2013 may discover the background flux generated by subrelativistic

CRs in Sgr B2. Alternatively hydrogen ionization of the molecular gas in Sgr

B2 may be caused by high energy electrons. We showed that the spectrum of

electron bremsstrahlung is harder than the observed continuum from Sgr B2, and

in principle this X-ray component provided by electrons could be seen from the

INTEGRAL data as a stationary high energy excess above the observed spectrum

E−2
x .

1. Introduction

One of the important but still unresolved problems of astrophysics is spatial distribution

of cosmic rays (CRs) in the Galaxy. We still do not have reliable understanding on how
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CRs are distributed in different parts of the Galaxy and what is their spectrum there. In

principle, this can be estimated from the characteristics of nonthermal emission generated

by CRs in a range of wavelengths. The density of relativistic protons in the Galactic Disk

(GD) can be derived from the observed intensity of gamma-rays, which are believed to be

produced by proton-proton (pp) collisions while the density of subrelativistic CRs can be

estimated from the emission of nuclear de-excitation lines and IR-absorption lines of ionized

hydrogen (see, e.g., Berezinskii et al. 1990; Ramaty et al. 1979; Oka et al. 2005).

Several attempts were undertaken to derive the distribution of relativistic CRs in GD

with energies above 1 GeV from the gamma-ray data. The distribution of CRs, derived

from the COS-B (Bhat et al. 1986; Bloemen et al. 1986; Strong et al. 1988), EGRET (see,

e.g., Strong & Mattox 1996) and Fermi-LAT (Abdo et al. 2010; Ackermann et al. 2011;

Tibaldo et al. 2013) measurements, showed that the density of CRs in the Galactic Center

(GC) was higher than near Earth but their spatial distribution in the GD was much flatter

than the distribution of their potential Galactic sources: supernova remnants (SNRs) (see

Case & Bhattacharya 1998; Green 2012) or pulsars (see, e.g., Lorimer 2004).

A natural explanation could be an effective spatial mixing of CRs by particle scattering

on magnetic fluctuations in the Galaxy if the GD is surrounded by a giant halo, in

which CRs spend a significant part of their lifetime before escaping from the Galaxy (see

Berezinskii et al. 1990). However, numerical calculations showed (see, e.g., Dogiel & Uryson

1988; Bloemen et al. 1993), even in the most favorable case of a very extended halo, that

this scattering (described as diffusion propagation) was unable to remove the signature of

the source distribution. The CR distribution derived from the diffusion model was steeper

than the distribution inferred from gamma-ray observations, although it was flatter than

the source distribution. One of the explanations was suggested by Strong et al. (2004) who

showed that the problem can be solved by a variation in the WCO-to-N(H2) (metalicity)
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scaling factor. Another explanation was suggested by Breitschwerdt et al. (2002) who

assumed that CRs left the disk faster from regions of a higher concentration of SNRs which

will smoothen the CR distribution in the GD in comparison with that of their sources.

However, estimates of the CR density, derived from the gamma-ray data, are model

dependent, because a simplified model of the gas distribution in the GD is used in

calculations. Besides, the adopted distribution of CR sources in the GD cannot be accepted

as absolutely reliable because of the obscurity of dust and so on.

Another possibility to define the density of CRs at different galactocentric radii (and

even at different altitudes above the GD) is the analysis of gamma-ray emission from

molecular clouds whose total mass is known, see Digel et al. (1996); Hui et al. (2011);

Yang et al. (2014a,b); Tibaldo et al. (2015) for the GeV energy range and Aharonian et al.

(2006) for the TeV energy range. A special case is the circumnuclear disk of molecular gas

in the Galactic plane whose position may coincide with the source J1745.6-2858 from the

second and third Fermi LAT source catalog (see Nolan et al. 2012; Abdo et al. 2015). This

gamma-ray emission can be provided by CRs generated in the course of present or past

activity of Sgr A* (see Chernyakova et al. 2011; Chernyshov et al. 2014; Malyshev et al.

2015). However, analysis of the radiation from the source J1745.6-2858 is beyond the scope

of the present work. We suppose to analyse this emission elsewhere. We note that van Eldik

(2015) provided an excellent review on the origin of gamma ray emission from the GC.

Recent analysis of gamma-ray emission from local molecular cloud near Earth and

the cloud Sgr B2 in the GC provided by Yang et al. (2014a,b) showed that the density of

CRs was almost the same in these regions although the distance between them is about 8

kpc. However, these estimations of CR density inside the clouds depend on how freely can

energetic particles penetrate into molecular clouds. This question is one of the goals of this

article.
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The spectrum of CRs in the energy range below 1 GeV can also be estimated from the

gamma-ray data. Dermer et al. (2013) derived the spectrum of proton component of CRs

in the local interstellar gas from the mid-latitude measurements of the Galactic gamma-ray

emission (see Abdo et al. 2009). These investigations showed that there was a flattening in

the proton spectrum below several GeV. Similar conclusion was obtained by Neronov et al.

(2012) from investigation of gamma-ray emission generated in local molecular clouds.

However, due to the energy threshold of pp reaction, the gamma-ray data that is useful for

deriving the spectrum of CR protons are those with energies above hundred MeV.

Bouchet et al. (2011) derived the spectrum of Galactic electrons in the range between

1 and 5 GeV from the intensity of diffuse hard X-ray emission measured by INTEGRAL.

They showed that a significant fraction of the Ridge emission in the range above 50 keV is

produced by the inverse Compton scattering of these electrons on background photons.

Almost forty years ago Ramaty et al. (1979) suggested to measure a flux of nuclear

de-excitation lines with Eγ ∼ 0.1 − 10 MeV generated by subrelativistic CRs. In

order to estimate their density in the range between several MeV and hundred MeV.

However, the sensitivity of gamma-ray telescopes was not (and still is not) high enough

to detect these lines in the diffuse gamma-ray spectrum (see e.g. Dogiel et al. 2009b;

Benhabiles-Mezhoud et al. 2013).

Another very interesting results about the parameters of low energy cosmic rays in the

GC region was obtained by Nobukawa et al. (2015). They found an excess of the 6.4 keV

line emission in the near east of the GC. They concluded that this excess is due to iron

atom bombardment by protons with energies 0.1 - 1000 MeV. The estimated energy density

of these protons is about 80 eV cm−3 which is almost two orders of magnitude higher than

the energy density of relativistic CRs near Earth.

In principle, the spectrum of low energy CRs in the range below 100 MeV can also
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be derived from the ionization rate of hydrogen in the interstellar medium. The point

is that subrelativistic electrons and protons ionize hydrogen molecules effectively. The

ionization rate can be derived from the H+
3 IR absorption lines (see Oka et al. 2005;

Indriolo & McCall 2012, see also the review of Dalgarno (2006)) that allows one to estimate

the density of subrelativistic CRs inside molecular clouds and in the intercloud medium

(see e.g. Dogiel et al. 2002, 2013, 2014).

The average ionization rate in the 100 pc central region of the Galaxy, measured by

Oka et al. (2005), is about (3 − 5) × 10−15 s−1, while this value for the cloud Sgr B2 is

depleted and equals 4 × 10−16 s−1 (Van der Tak et al. 2006). This means that penetration

of subrelativistic CRs into Sgr B2 is not complete, and the average density of these CRs in

the intracloud region is higher than inside Sgr B2. Similar effect is observed for the clouds

outside the GC where the ionization rate is about 3.5 × 10−16 s−1 in the diffuse clouds,

while this value is 3× 10−17 s−1 in dense molecular clouds (Indriolo & McCall 2012).

The spectrum of subrelativistic CRs inside molecular clouds depends on processes

of particle propagation there. Several models are used in order to estimate CR density

in the clouds. One of them is extrapolation of the model of CR propagation in the

interstellar medium when charged particles are scattered by resonant MHD waves (see, e.g.,

Dogiel et al. 2002; Gabici et al. 2006; Protheroe et al. 2008). Alternatively, Padovani et al.

(2009) derived the spectrum of subrelativistic CRs in the local interstellar medium from

the rate of hydrogen ionization in the local molecular clouds assuming that they propagate

freely (without scattering) inside the clouds although the effect of large scale magnetic field

may be essential in this case (see Padovani & Galli 2011). We discussed processes of CR

penetration into the clouds and show that this process may differ strongly than supposed

in previous publications. We try to estimate also the spectrum of CRs in the GC from

the observed gamma-ray flux and the ionization rate of hydrogen in Sgr B2. Propagation
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of CRs in partially ionized medium is a rather complicated process, which includes CR

ionization of the medium, hydromagnetic waves generation and damping, density and

magnetic structures of the medium. We address the density structure and ionization state

of Sgr B2 in Section 2. Section 3 discusses excitation of hydromagnetic waves by CRs, wave

damping by ion-neutral collisions and diffusion of CRs in the cloud, and Section 4 considers

the magnetic structure of the cloud. Base on these, we calculate the CR spectrum for two

models of the cloud in Section 5. Section 6 gives some consequences of the model. Section

7 discusses the possibility of ionization by electrons. Finally, in Section 8 we provide a

summary.

2. Hydrogen parameters of Sgr B2 and energy losses of CRs

Parameters of CR propagation depends on the medium parameters. The strength

of magnetic field in Sgr B2 was estimated from the Zeeman splitting and was about

0.5 mG (see, e.g., Crutcher et al. 1996). The cloud Sgr B2 is a very massive complex.

Aharonian et al. (2006) estimated its total mass as (6 − 15) × 106 M⊙ for a 0.5◦ × 0.5◦

(75× 75 pc2) region surrounding Sgr B2. The gas distribution in the cloud Sgr B2 is highly

uncertain.

Lis & Goldsmith (1989, 1990, 1991) and Goldsmith et al. (1990) derived a two-

component density distribution: an envelope with a constant H2 density about 1800-3500

cm−3 extending to the outer radius about 22.5 pc and a central core with the central density

4− 9× 104 cm−3. According to their analysis the density distribution can be approximated

as

nH2
(r) =







n1 + n2 , if r ≤ r0 ,

n1

(

r0
r

)α
+ n2 , if R ≥ r > r0 ,

(1)
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with r0 = 1.25 pc, R = 22.5 pc, n1 = 5.5× 104 cm−3, n2 = 2.2× 103 cm−3, and α = 2. The

H2 column density at the center is, N(H2) = 2.6× 1024 cm−2, and the total mass of Sgr B2

they took as 6.3× 106 M⊙.

Protheroe et al. (2008) expressed the gas distribution in Sgr B2 in the form

nH2
=

MH2

2mH

1

(
√
2πσ)3

exp(−r2/2σ2) , (2)

where MH2
is the total mass of Sgr B2 and σ = 2.75 pc. The density is about 105 cm−3 at

the center of the Sgr B2 complex, and decreases to 10 cm−3 at a radius of ∼ 12 pc, which

they considered to be its outer radius. The central column density is about 2.5× 1024cm−2

and the estimated mass of Sgr B2 is about MH2
≃ 2× 106 M⊙ (see Protheroe et al. 2008).

Below we analyze processes of hydrogen ionization and gamma-ray emission for these

two extreme distributions of hydrogen in Sgr B2.

CRs lose effectively their energy inside the dense molecular clouds. In the non-

relativistic energy range the rate of losses is determined by ionization (see Hayakawa 1964;

Ginzburg 1989)
(

dE

dt

)

i

= − 2πe4nH

mecβ(E)
ln

(

m2
ec

2Wmax

4πe2~2n

)

, (3)

where nH is the density of background gas, me is electron mass, Wmax is the highest energy

transmitted to an ambient electron, and β(E) = u/c, where β is the particle velocity u in

the unit of light speed c. The characteristic time of the losses is

τi =

∫

E

dE

(dE/dt)i
. (4)

In the relativistic energy range protons lose their energy by collisions with the ambient

gas (pp collisions). The characteristic time of the process is

τpp = cnHσpp , (5)
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where the cross-section of pp-reaction can be found in e.g. Kamae et al. (2006).

One of the key point for the problem of CR penetration into dense molecular clouds is

how they propagate through the gas. This problem is discussed in the next section.

3. CR diffusion inside molecular clouds

In the standard model of CR propagation through the interstellar medium (see, e.g.,

Berezinskii et al. 1990) the spatial diffusion coefficient can be presented in the form

D ∼ u2

ν(E)
, (6)

where ν(E) is the frequency of particle scattering by resonant MHD-waves:

ν ≃ ωH
δH(k)2

H2
0

. (7)

Here δH(k) is the strength of a magnetic fluctuation with the wave number k, H0 is the

large scale magnetic field, ωH = eH0/mcγ, γ and m are the gamma-factor and the mass of

a scattered particle, respectively. The wave-particle interaction is resonant. A particle with

the energy E is scattered by waves whose wavelength is about the particle Larmor radius,

λ = 2π/k ∼ rL(E). The amplitude of magnetic fluctuations, δH , is supposed to be much

smaller than the strength of the large scale magnetic field H0 in the interstellar medium,

δH(k) ≪ H0 . (8)

For the wave spectrum of fluctuations W (k) ∝ k−κ, where δH(k)2 = kW (k), the spatial

diffusion coefficient D of relativistic CRs is energy dependent as (see Berezinskii et al. 1990)

D(E) ∝ E2−κ . (9)

This model of CR diffusion in the interstellar medium is often extrapolated to the case

of CR propagation inside molecular clouds. However, the process of particle propagation
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nearby and inside almost neutral and dense gas of molecular clouds is quite different in

comparison with the standard process of CR diffusion in the interstellar medium. There are

several specific mechanisms which determine this process:

1. Dense molecular clouds absorb CRs with energies whose lifetime τlt(E) (determined

by Equation (4) or (5)) is smaller than the time of particle propagation through

the cloud, τpr. For ballistic propagation in the cloud τpr = R/u and for diffusion

propagation τpr = R2/Dc (see e.g. Morfill 1982; Dogiel & Sharov 1985). Here R is a

cloud radius, u is the particle velocity, and Dc is the coefficient of spatial diffusion in

the cloud.

For energies determined by the condition, τlt(E) < τpr(E), a flux of CRs to the

cloud arises because of CR absorption. This CR flux generates MHD-waves with the

increment (see Kulsrud & Pearce 1969)

γ(k, r) =
π2e2vA

c2

∫

p

dpu(1− µ2)δ

(

p|µk‖| −
eH

c

)(

k‖
|k|

∂f

∂µ
+

vA
u
p
∂f

∂p

)

. (10)

Here H is the magnetic field strength near the cloud, vA = H/
√
4πρi is the Alfvèn

velocity, ρi is the density of ionized gas, f(p, r, µ) is the CR particle distribution

function, p is the particle momentum, µ is the particle pitch-angle, k is the wave

number of a magnetic fluctuation excited by CRs, and k‖ = H · k/|H|.

2. On the other hand, ion-neutral friction in the dense low ionised molecular clouds

damps MHD-waves with frequencies ω = kVA < µin, where VA = H/
√
4πρi is the

Alfvènic velocity, ρi is the density of ionised component (see e.g. Kulsrud & Pearce

1969), and the decrement of wave absorption is

µin ∼ mn

(mi +mn)
nH〈σinvH〉 . (11)

Here σin is the cross-section of ion-neutral collisions, mn is the mass of neutral

particles, mi is the mass of ionised particles, and vH is the thermal velocity of
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hydrogen. For the condition of molecular clouds 〈σv〉 = 2 ·10−9cm3s−1 (see Pinto et al.

2008).

Dogiel & Sharov (1985) provided detailed analysis of CR propagation nearby

molecular clouds and showed that MHD waves are excited far away from the clouds,

but they are completely damped inside the clouds. This means that CRs should freely

propagate inside the clouds without scattering (but with energy loss). We notice also

that similar analysis of CR propagation nearby the clouds and MHD-wave excitation

there was provided latter by Everett & Zweibel (2011) and Morlino & Gabici (2015).

3. However, as observations showed, the neutral gas in the clouds is highly turbulent

(see the review of Hennebelle & Falgarone 2012). This turbulence of neutral gas

excites forced magnetic fluctuations through interaction with the ionized component

(Dogiel et al. 1987). These fluctuations prevent free particle propagation in the

clouds. This process is discussed in the next section.

4. Magnetic field structure inside molecular clouds

Detailed analysis of magnetic field structure in turbulent molecular clouds was provided

by Istomin & Kiselev (2013). Below we present a brief review of their analysis and apply its

results to the case of Sgr B2. For an homogeneous and isotropic medium they considered

the correlation function of the velocity field 〈vi(x, t)vj(x+ r, t̄)〉 as delta-correlated in time,

〈vi(x, t)vj(x+ r, t̄)〉 = vij(r)τcδ(t− t̄) , (12)

where τc is the characteristic time of hydrodynamic turbulence of the neutral gas.

From the conditions of the tensor symmetry and for the incompressible liquid (∇·v = 0)

the correlation tensor vij(r) can be presented in the form

vij(r) = 2V (r)δij + r
dV (r)

dr
(δij −

rirj
r2

) , (13)
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where V (r) is an unknown function, which will be derived below from the observed spectrum

of turbulence in molecular clouds.

In this medium the correlation tensor of magnetic fluctuations bij similar to the velocity

correlation tensor, but the average is taken at the same time moments,

bij(r, t) = 〈bi(x, t)bj(x + r, t)〉 = 2Qδij + r
dQ

dr

(

δij −
rirj
r2

)

, (14)

where the function Q is a function of r and t in the general case. The amplitude of magnetic

fluctuations b0 is defined as b20 = 〈bi(x)bi(x)〉.

If there is a large scale magnetic field H0 in the medium, then the equation for the

correlation function Q can be derived from the MHD equations (see Istomin & Kiselev

2013)

1

2τc

∂Q(r)

∂t
=

[

V (0)− V (r) +
1

πρiµinτc

(

Q(0) +
H2

0

6

)](

d2Q

dr2
+

4

r

dQ

dr

)

−dV

dr

dQ

dr
− 1

r

(

4
dV

dr
+ r

d2V

dr2

)(

Q +
H2

0

6

)

, (15)

where ρi is the density of ionised component of the gas.

The spectrum of turbulent velocities in molecular clouds was derived from measurements

of the CO and NH3 line Doppler broadening. The turbulence has a power-law Kolmogorov-

like spectrum in a very broad range of scales from supersonic (Larson 1981) to subsonic

(Myers 1983) regions (see also the review of Hennebelle & Falgarone 2012):

v(L) = 1.1 Lα(pc) km s−1 where α ≃ 0.3− 0.5 , (16)

where v is the velocity of turbulent motions and L is its scale (0.01 < L < 300 pc). Then

from Equation (16) the correlation function of velocity V can be derived. With the known

V we can define the correlation function of magnetic fluctuations Q from Eq. (15). Below

we obtain this function for the stationary case when dQ/dt = 0.
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Here we use dimensionless units for the magnetic field strength:

H̄ =

√

3

πRv0ρiµin
H . (17)

Here v0 is the the velocity of turbulent motions in the scale L ≤ R.

If dimensionless large scale magnetic field H̄0 << 1, the energy of magnetic field

fluctuations is concentrated near the correlation length, Lcorr, which is much smaller than

the cloud size R. Then the amplitude of magnetic fluctuations, δH , is much larger than H0

(see Istomin & Kiselev 2013),

δH ≫ H0 , (18)

(cf. Equation (8)).

By definition the correlation length is

Lcorr ≃
1

b20

∞
∫

0

〈bi(0)bi(r)〉dr , (19)

and can be estimated if the function Q is known from Equation (15).

Then from numerical calculations of Equation (19) we obtain that

Lcorr/R = 0.9H̄0 , (20)

δH̄ = 1.4
√

H̄0 . (21)

We apply this theory to the molecular cloud Sgr B2. For estimates we use the following

parameters of the cloud and the intercloud medium. The gas density in the cloud nH ≃ 105

cm−3, the ionization degree in the dense molecular clouds nH+

3
/nH2

∼ 10−8 (see e.g. Oka

2006), the radius of the Sgr B2 region emitting gamma-rays is R = 7 pc (see Yang et al.

2014b), the total magnetic field strength in Sgr B2, H0 + δH ≃ 550 µG (Crutcher et al.

1996; Crutcher 1999; Crutcher et al. 2010), the average large scale magnetic field in the

GC is about H0 ∼ 50 − 100 µG (Crocker et al. 2010). For the core Sgr B2, where the
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gas density is nH ∼ 105 cm−3, and δH/H0 ≃ 5.5, Equation (20) gives Lcorr ≃ 0.4 pc, and

Equation (21) gives v0 = 7.3 km s−1. This estimates of the turbulent velocity is close to

that presented in Crutcher (1999) for Sgr B2. In the outer envelope with nH ∼ 103 − 104

cm−3, we expect that δH ≪ H0.

In a magnetic field H = 0.55 mG the Larmor radius, rL, of particles with energies

E < 108 GeV is smaller than Lcorr. In this medium propagation of magnetized particles

along tangled magnetic field lines, can be described as diffusion with the coefficient (see for

details Dogiel et al. 1987)

Dc(E) ∼ cβ(E)Lcorr

2
∼ cLcorr

√

(E/mpc2)2 + 2(E/mpc2)

(E/mpc2)2 + 2(E/mpc2) + 1
, (22)

where β(E) = u/c and u is the particle velocity . It follows from Equation (22) that

Dc(E) ∝







√
E , if u < c ,

constant , if u ∼ c ,
(23)

(cf. Equation (9)).

5. Spectrum of CRs inside and outside Sgr B2

The background hydrogen in the GC is ionised by subrelativistic CRs (see Oka et al.

2005, for equations describing ionization processes see, e.g., Dogiel et al. (2013, 2014)). The

ionization rate of hydrogen, ζ , is

ζ =

∫

σHuN(E)dE , (24)

where σH is the ionization cross-section of the molecular hydrogen by proton impact (see

Rudd et al. 1983; Tatischeff 2003), and u is the velocity of CR particles and N(E) is their

spectrum.
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As we mentioned in Section 1 the ionization rate in the diffuse molecular gas, ζ0 is

about 3 × 10−15 s−1, while inside the core of Sgr B2 the rate, ζc is one order of magnitude

smaller. Dogiel et al. (2011, 2013, 2014) and Tatischeff et al. (2012) presented arguments

in favour of hydrogen ionization by subrelativistic electrons, while the alternative process

of ionization by high energy electrons was discussed in Yusef-Zadeh et al. (2013). Below we

discuss these models.

For calculations we approximate the gas distribution in Sgr B2 according to

Equation (1) or (2):

• Model I: Sgr B2 consists of the two components as it was derived by Lis & Goldsmith

(1991), a dense core with density nc ∼ 105 cm−3 and radius r0 = 5 pc surrounded by

a diffuse component with density nd ∼ 103 − 104 cm−3 and radius R = 20 pc;

• Model II: The mass of the cloud is concentrated in a dense core (as it follows from

Protheroe et al. (2008)) with density nc ∼ 105 cm−3 and radius r0 = 5 pc without an

outer envelope.

For both distributions the total mass of the cloud is between (2 − 6) × 106 M⊙ and the

gas column density in the direction of the cloud center is LH ∼ 1024 cm−2 as follows from

observations.

From Section 4 it is clear that magnetic fluctuations with δH > H0 are excited in the

dense core where the kinetic energy of turbulent motions is high enough. Only there we

expect diffusion propagation of CRs with the coefficient (23). In the envelope, particles

propagate without significant scattering because the fluctuations are damped by ion-neutral

friction.

We assume that the spectrum of subrelativistic protons, N̄(E), in the intercloud
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medium can be presented as power-law,

N̄(E) = K

(

E

E0

)δ

θ(Emax −E) , (25)

where E is the kinetic energy of subrelativistic protons, Emax is the maximum energy of

subrelativistic protons in the intercloud medium and E0 equals e.g. 1 MeV. Then from

the ionization rate, ζ0 = 3 × 10−15 s−1, measured by Oka et al. (2005) in the diffuse

molecular clouds (outer envelope) and the rate of ionization inside Sgr B2, ζc = 3 × 10−16

s−1 (Van der Tak et al. 2006), we can estimate parameters of the CR spectrum (25).

The magnetic fields are nonuniform inside molecular clouds and their strength

correlates with the gas density as

H ∝ n0.65
H , (26)

see Crutcher et al. (2010). We cannot say whether it is due to the frozen effect of the

magnetic fields into the gas only or this may be due to more effective generation of magnetic

fluctuations in dense cores by the neutral gas turbulence as we assumed above.

Padovani & Galli (2011) assumed a convergent structure of magnetic field line nearby

molecular clouds and analysed the effect of CR mirroring. They showed that this effect

reduced the CR density in the clouds and the ionization rate there by a factor of ∼ 4.

In the following we neglect variations of the large scale magnetic field in the outer

envelope. We assume that inside the outer envelope subrelativistic CRs propagate through

the medium without significant scattering, i.e., along field lines of the large scale magnetic

field H0 with their own velocity. This is a big simplification of the process, but it provides

an upper limit for the density of CRs penetrating into the envelope. In this work we

consider stationary distribution of CRs in molecular clouds. Unlike the case of the source

J1745.6−2858 near Sgr A* (right at the GC), we do not have evidences indicating a time

varying CR source at or near the location of Sgr B2. Nevertheless, one can find a solution

for the time-dependent case in Chernyshov et al. (2014).
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We describe CR propagation inside the outer envelope as

cβ(E)
∂N

∂x
− ∂

∂E

[(

dE

dt

)

i

N

]

= 0 , (27)

with the spectrum of CRs at the outer boundary of the envelope (x = 0) as presented by

(25). The goal is to calculate the spectrum of subrelativistic CRs that reach the surface of

the core at r0 = 5 pc.

The solution of Eq.(27) is

N(x, E) = K

(

E

E0

)1/2
[

(

E

E0

)2

+
ax

√
m

E2
0

]
δ+0.5

2

θ(E2
max − E2 − ax

√
m) . (28)

Here we presented the term of energy losses in Eq.(3) as dE/dt = a/
√
E, and the mean free

path of a subrelativistic particle with mass m and energy E is x ∼ E/(dE/dt)i
√

2E/m =

E2/a
√
m.

The characteristic lifetime of a subrelativistic proton with energy E is

τ =

∫

dE

(dE/dt)i
=

1

3

meE
3/2

√
2πnHe4

√
mΛ

. (29)

The energy loss gas column density, which a subrelativitic proton with energy Ē passes

through during its lifetime, is

LH =
1

3

me

m

Ē2

πe4Λ
. (30)

In Figure 1 we show the energy loss gas column density for electrons and protons

derived from equations of energy losses taken from Hayakawa (1964); Ginzburg (1989) and

Mannheim & Schlickeiser (1994). For the fixed gas column density of the outer envelope

taken from Lis & Goldsmith (1989, 1990, 1991), which is presented by Equation (1), we

can estimate the energy of protons which can reach the surface of the central core. For

LH ≃ 1023 cm−2 this value is about E & 20 MeV .
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Fig. 1.— Energy loss gas column density, LH , passed by a proton (solid line) and an electron

(dashed line) with energy E.

As an example, in Figure 2 we show the expected spectrum of protons at the boundary

of the central core Nc(E) for LH = 1023 cm−2 if the spectrum of protons in the intercloud

medium is N̄(E) = K(E/E0)
−0.5.

According to Section 4, inside the core CR propagation is described as diffusion with

the coefficient (see Dogiel et al. 1987)

Dc =
uLcorr

2
, (31)

where Lcorr = 0.4 pc.

The distribution function of protons, Nc(E), is described by the equation

− 1

r2
∂

∂r

(

r2Dc
∂Nc

∂r

)

− ∂

∂E

[(

dE

dt

)

i

Nc

]

= 0 , (32)

where (dE/dt)i is the rate of ionization losses in the dense core, calculated for the density

nH ∼ 105 cm−3.
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Fig. 2.— Expected spectrum of proton at the boundary of the central core Nc(E) for LH =

1023 cm−2 and the spectrum of protons in the intercloud medium N̄(E) = K(E/E0)
−0.5.

The boundary condition on the core surface, r = r0

Nc(E) = K

(

E

E0

)1/2
[

(

E

E0

)2

+
a(R − r0)

√
m

E2
0

]− δ+0.5

2

θ(E2
max −E2 − a(R− r0)

√
m) , (33)

where R and r0 are the radius of the outer envelope and the central core (see Model I). We

can ignore the unknown constant K from the ratio of ionization rates outside and inside

the core.

The ionization rate averaged over the scale LH of the outer envelope is ζ = 3 × 10−15

s−1,

ζc ≃
1

LH

∫

R

dr

∫

σHuNc(E, r)dE . (34)

The ionization rate inside the central part of core is ζc = 3× 10−16 s−1. Then

ζ

ζc
≃ r0

(R− r0)

R
∫

r0

dx
Emax
∫

Emin

dEN(x, E)σi(E)u(E)

r0
∫

0

dr
Emax
∫

Emin

dENc(r, E)σi(E)u(E)

. (35)
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From Equation (35) we can derive the spectral index δ as a function of Emax for a given

value of LH in the outer envelope, where LH = nH(R − r0), R = 20 pc and r0 = 5 pc. The

constant K is calculated then from the ionization rates inside or outside the cloud.

In Figure 3 we show the spectral index δ for different values of nH . The case nH = 0

corresponds to the case where the whole mass of Sgr B2 is concentrated in the core (i.e.

Model II). One can see from the figure that for very hard spectra with δ = 0.2 almost all

Fig. 3.— The required maximum energy of protons Emax as a function of the spectral index

δ and the gas density in the outer envelope, when nH 6= 0 in the outer envelope (Model I),

and for nH = 0 in the outer envelope (Model II).

particles reach the core surface. The required maximum energy Emax of protons is in this

case about 0.2 GeV independent of the gas density.

The derived spectrum of subrelativistic protons is shown in Figure 4 for different values

of nH in the envelope and R − r0 = 15 pc. The derived values of Emax, the density of
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hydrogen nH , and the energy density of subrelativistic protons needed for the ionization

rate in Sgr B2 are also shown in the figure.

The relativistic component of CR spectrum inside Sgr B2 can be derived from the

observed flux of gamma-rays there (see Yang et al. 2014b). Gamma-ray flux generated by

relativistic protons in molecular clouds can be calculated by

Fγ(Eγ) = 4πc

R
∫

0

nH(r)r
2dr

∫

E

N(E, r)
dσ

dEγ
(E,Eγ)dE , (36)

where nH(r) is the hydrogen distribution, dσ/dEγ(E,Eγ) is the differential cross-section for

gamma-ray production in proton-proton collisions (Kamae et al. 2006), and N(E, r) is the

distribution of relativistic protons in Sgr B2.

If the mass of Sgr B2 is concentrated in the envelope (i.e. Model I), then according to

our analysis relativistic protons fill uniformly this region and their density is the same as

in the intercloud medium. It is clear from Figure 2 that even protons with E ≃ 0.2 GeV

can penetrate through the outer envelope. Protons with energies E & 1 GeV pass through

the envelope without absorption (τi, τpp > τpr). The spectrum derived for this case by

Yang et al. (2014a,b) is shown as shaded areas in Figure 4. Variations of the spectrum are

governed by the uncertainties of the mass of Sgr B2, which is in the range of 2 − 10 × 106

M⊙. The energy density of relativistic protons is then within 1 to 4 eV cm−3.

It is interesting to notice that in this case the required energy density of subrelativistic

protons is more than one order of magnitude higher than that of relativistic protons.

If the mass of Sgr B2 is mainly concentrated in the core (i.e. Model II), the distribution

of relativistic protons in the cloud is calculated similarly to Equation (32) ,

Nc

τpp(E)
− 1

r2
∂

∂r

(

r2Dc
∂

∂r
Nc

)

= 0 , (37)

where Dc ∼ cLcorr/2 =constant and τpp = (nHcσpp(E))−1 is the characteristic time of pp
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collisions. The boundary condition is

Nc(E) |r=r0 = N̄(E) , (38)

where N̄(E) is the spectrum of relativistic protons in the intercloud medium, which is

supposed to be a power-law.

In this case protons are distributed in the core nonuniformly (τpp < τpr) and their

spectrum can be derived from Equations (36) & (37). Results of the calculations are shown

as the solid line in Figure 4. One can see that the energy density of relativistic protons is

about one order of magnitude higher than that near Earth, but it is still smaller than that

of subrelativistic CRs.

From Figure 4, it is reasonable to conclude that relativistic and subrelativistic protons

have different sources in the GC because their spectra have a gap in intensities in the

range about several hundred MeV and they do not match smoothly with each other at

these energies. An exception is the case where the whole mass of Sgr B2 is concentrated

in the core (the solid line in the subrelativistic energy range and the straight line in the

relativistic energy range). It seems from the figure that in this case the distribution of

subrelativistic and relativistic protons can be described by a unified spectrum with a break

of the spectral index from δ ≃ −3 in the relativistic energy to δ ≃ 0.2 in the subrelativistic

energies. Similar spectrum can be formed in the intercloud space, e.g., by ionization

losses (see Equation (3)) if the spectrum of protons injected by sources has a cut-off,

Q(E) = KEδθ(E −Emin). For the equation

d

dE

[(

dE

dt

)

i

N(E)

]

= Q(E) , (39)

the solution for E < Emin is

N(E) ∝ E0.5 . (40)

For more details of this solution see Dogiel et al. (2009b).
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6. By-products of the model of hydrogen ionization by subrelativistic protons

With the spectrum of protons derived in the previous section we can analyse whether

this model can be proved or disproved from observations.

6.1. Emission of the 6.4 keV iron line

First we would like to mention that subrelativistic protons not only ionize hydrogen

molecules in the clouds but also atoms of heavier elements, e.g., iron, whose ionization

of K-α shell is observed as the 6.4 keV line emission. It was proved that this emission is

generated by a front of hard X-ray photons emitted in the past by Sgr A* (see Koyama et al.

1996) whose luminosity was much higher in the past than at present (see e.g. Ryu et al.

2013). The emission shows time variability (see, e.g., Koyama et al. 2008), and it had

decreased by one order of magnitude from the peak period in 2000 to 2013 (Inui et al. 2009;

Nobukawa et al. 2011, 2014). It is expected that for about twenty years of observations of

Sgr B2, the front of X-rays have to leave (almost) the cloud. Then we may expect that a

background flux of the line emission from Sgr B2 generated by CRs can be seen at present

or in the near future (see Dogiel et al. 2011).

Temporal variations of the 6.4 keV Sgr B2 flux in the period 2005-2013 are presented

in Table 1.

Below we compare these Suzaku data with model estimations. From the spectrum

shown in Figure 4 we can estimate the expected 6.4 keV line emission generated by the

protons:

I6.4 =
1

R2
GC

R
∫

0

nH(r)r
2dr

∫

E

N(E, r)vσ6.4dE , (41)

where the cross-section of 6.4 keV photon production by proton impact σ6.4 is from
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Table 1: The 6.4 keV flux from Sgr B2 region of 2.0′ radius.

Year FeI-Kαa,b

2005 (18.0± 1.3)× 10−5

2009 (7.4± 0.8)× 10−5

2013 (3.0± 0.9)× 10−5

aErrors at 90% confidence levels. Background is taken into account.

bObserved flux in the unit of photons cm−2 s−1.

Note. — The data were derived from Nobukawa et al. (2011, 2014).

Tatischeff (2003).

The expected intensity depends weakly on model parameters and is about

I6.4 ≈ (3− 5)× 10−6η ph cm−2 s−1 , (42)

where η is the abundance of iron atoms with respect to solar. The estimated iron abundance

η in the Sgr B2 is in the range 1.3− 1.9 (see, e.g., Revnivtsev et al. 2004; Nobukawa et al.

2011). The estimated flux of the 6.4 keV line in Eq. (42) is three times smaller than it was

in 2013. Hence in the framework of the model, subrelativistic protons might produce in

2013 about 30% of the total flux from Sgr B2. We cannot exclude that at present, the front

of hard X-rays has left Sgr B2 and this emission is generated by subrelativistic CRs. Then

it should drop down to the level predicted by Eq. (42). Future analysis of the X-ray data

for the period after 2013 may confirm our conclusion. Restrictions on processes of 6.4 keV

line production can be obtained from measurements of the line broadening (see Dogiel et al.

1998). We hope that this crucial information to constrain the origin of the 6.4 keV emission

from Sgr B2 will be obtained by ASTRO-H (see Koyama et al. 2014).
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6.2. Hard X-ray continuum

Hard X-ray photons and subrelativistic CRs also produce a flux of continuum emission

by Thomson scattering of photons (Compton echo) or by bremsstrahlung losses of charged

particles. Observations presented by Terrier et al. (2010) showed time variability of the

X-ray flux from Sgr B2 in the range from 20 to 100 keV which correlated nicely with the

variability of the 6.4 keV line emission from Sgr B2. This confirmed that their common

origin is due to X-ray irradiation from Sgr A*.

The X-ray emission produced by inverse bremsstrahlung of protons can be calculated

from

Ix(Ex) =
1

R2
GC

R
∫

0

nH(r)r
2dr

∫

E

N(E, r)
dσx

dEx
(E,Ex)dE , (43)

where σx/dEx is the cross-section of inverse bremsstrahlung

dσx

dEx
(E,Ex) =

8

3

e2

~c

(

e2

mec2

)2
mec

2

ÊEx

ln







(
√

Ê −
√

Ê − Ex

)2

Ex






, (44)

where Ê = (me/mp)E for protons and Ê = E for electrons. Below we adopt the cross-section

from (Haug 1997). Subrelativistic protons with the energy E emit bremsstrahlung photons

with energies Ex . (me/mp)E (see Hayakawa 1964). Therefore for the cutoff energy of

subrelativistic protons about 0.2 − 0.5 GeV we expect that they generate hard X-ray

emission in the range Ex . 10− 30 keV.

The calculated X-ray fluxes depending of the Sgr B2 mass are about

I2−10
x = (4− 6)× 10−13 erg s−1 cm−2 for 2 keV ≤ Ex ≤ 10 keV , (45)

I20−60
x = 7.5× 10−13 erg s−1 cm−2 for 20 keV ≤ Ex ≤ 60 keV . (46)

One can see that the model estimations are significantly below the experimental data

presented in Nobukawa et al. (2011) for the range 2 − 10 keV and in Terrier et al. (2010)
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for the range 20 − 60 keV. However, the continuum X-ray flux shows strong decrease in

the Suzaku (2-10 keV) and the INTEGRAL (20-100 keV) ranges. For the period from

2003 to 2009 the flux dropped down by a factor 0.4 (Nobukawa et al. 2011; Terrier et al.

2010). Thus, one can expect that the continuum emission produced by subrelativistic CRs

(Equations (45) & (46)) may be seen in near future.

6.3. De-excitation nuclear lines

Subreletivistic protons and nuclei with energies between a few MeV and several

hundred MeV generates in the interstellar medium emission of nuclear gamma-ray lines

in the range from 0.1 to 10 MeV (see the review of Tatischeff 2003). Estimations of

Dogiel et al. (2009b) and Benhabiles-Mezhoud et al. (2013) showed, however, that this line

emission cannot be detected even in the GC because the sensitivity of existing gamma-ray

telescopes is not high enough. It seems nevertheless that the discovery of the gamma-ray

lines will be possible with new generation telescopes. Bearing this in mind, we estimated

the flux of C and O lines from Sgr B2, expected for the spectrum of subrelativistic protons,

derived in Section 5. For the double solar abundance in the GC the flux of the O line from

there is about 1.38× 10−7 ph cm−2 s−1 and the C line 8.34× 10−8 ph cm−2s−1.

6.4. Secondary electrons and radio emission from Sgr B2

Relativistic protons generate from pp collision not only gamma-rays, as discussed in

Section 5, but also secondary electrons, which should produce a synchrotron radio emission

in the relatively strong magnetic fields of Sgr B2. From the observed gamma-ray flux we

can estimate the density of secondary electrons and the flux of radio emission using the

equations for these processes presented, e.g., in Berezinskii et al. (1990). The flux of radio
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emission from Sgr B2 in the range 330 MHz to 2368 MHz was presented in Jones et al.

(2011) who concluded that they did not find any evidence for non-thermal emission from

Sgr B2 and the observed radio flux from there is of the thermal origin.

We estimated the synchrotron component generated by secondary electrons. As an

upper limit for the density of secondary electrons we derive their spectrum from the

gamma-ray data from Sgr B2 whose mass is 2 × 106 M⊙. The derived angular distribution

of the 330 MHz emission for this case is shown in Figure 5 together with experimental data

taken from Jones et al. (2011).

We see that even for the most favourable parameters of the model the nonthermal

component is below the intensity of thermal emission.

The flux of nonthermal component can be subtracted from the total radio emission

from Sgr B2 by observation of polarization. A flux of synchrotron emission is polarized if

the strength of large scale magnetic fields is high enough (see, e.g., Ginzburg 1989).

However as we concluded in Section 3 the chaotic component of the magnetic field, δH ,

is five times larger than the large scale magnetic field, H0, whose strength is estimated as

100 µG. The expected linear polarization degree, pl, was derived by Korchak & Syrovatskii

(1961), which is

pl =
(γ + 1)

(γ + 7/3)

(γ + 3)(γ + 5)

32

[

1− (γ2 + 8γ + 3)

24

H2
0

δH2

]

H2
0

δH2
for δH ≫ H0 . (47)

For the expected spectral index of secondary component γ (for the electron spectrum

∝ E−γ) with γ ∼ 3− 4, the estimated polarization degree of the nonthermal component of

Sgr B2 is about pl ≃ 3.5− 4.8%.

If, however, the turbulence inside the clouds is not strong enough and the amplitude of

magnetic fluctuations is small (δH ≪ H0), then the polarization degree is described by the
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equation (see Korchak & Syrovatskii 1961)

pl =
(γ + 1)

(γ + 7/3)

(

1− 2

3

δH2

H2
0

)

for δH ≪ H0 . (48)

The upper limit of linear polarization of synchrotron radiation can reach the level about

75− 80%, if the scale of H0 is about the cloud radius.

We hope that the next generation radio telescope SKA (see Strong et al. 2014;

Dickinson et al. 2015) may be able to detect the nonthermal flux of Sgr B2.

7. Hydrogen ionization by primary electrons in Sgr B2

Alternatively ionization of the molecular gas may be caused by high energy electrons

(see Yusef-Zadeh et al. 2013). Below we analyse whether the molecular hydrogen in Sgr B2

is ionized by electrons and whether we can distinguish from observations between processes

of proton and electron ionization there.

As follows from Figure 1 subrelativistic CRs are absorbed in the outer envelope, and

electrons with energies above 1 MeV are able to penetrate into the dense core. Therefore,

for estimates of processes of hydrogen ionization and bremsstrahlung emission from there

we can use equations in the relativistic energy range, which simplifies the calculations

significantly. The intensity of bremsstrahlung emission is determined by a cutoff position

derived from the rate of ionization losses in the outer envelope (see, e.g., Figure 2).

Electrons lose about 42 eV per one act of ionization (see Dalgarno et al. 1999). We we

can estimate the ionization rate of hydrogen as

ζ =
ne

42 eV

dE

dt
, (49)

where ne is the density of relativistic electrons in Sgr B2, dE/dt represents ionization losses

of these electrons per H-atom and per one electron. We notice that in the relativistic



– 29 –

energy range the rate of ionization losses weakly depends on the electron energy. From the

average ionization rate in Sgr B2, ζ0 = 4× 10−16 s−1, we obtain that the required density of

electrons with any energy above 1 MeV is ne ≃ 7.7× 10−8 cm−3.

These electrons provide X-ray bremsstrahlung radiation. However, unlike the case

of subrelativistic protons, the energy of bremsstrahlung photons is Ex . Ee. The X-ray

emissivity of relativistic electrons with Ee > 1 MeV can be estimated from Haug (1998).

For the range of 20-60 keV the bremsstrahlung emissivity ǫep = 5 × 10−23 erg s−1H−1

per electron for scattering by background protons and ǫee = 8.5 × 10−23 erg s−1H−1 for

scattering on background electrons. The total 20-60 keV X-ray flux from Sgr B2 is

Fx =
ne(ǫep + ǫee)MH

4πmpR2
GC

≈ 1.7× 10−12 erg s−1 cm−2 ×
(

MH

106M⊙

)

, (50)

where MH is the total mass of Sgr B2.

For the mass of Sgr B2 M = 8 × 106 M⊙ this X-ray flux reaches the level of 1 mCrab.

Just this flux was observed by (Terrier et al. 2010). As we noticed above the origin of

time variable continuum X-ray emission is the irradiation of Sgr B2 by hard X-ray emitted

in the past by Sgr A*. As follows from the observations of Suzaku and INTEGRAL

(Nobukawa et al. 2011; Terrier et al. 2010) the X-ray flux is a power-law with Fx ∝ E−2
x .

The electron bremsstrahlung of relativistic electrons is hard, ∝ E−1
x , as it follows from

Equations (43) & (44). Then the effect of electron bremsstrahlung is evident in the total

X-ray flux from Sgr B2 at relatively high values of Ex as a stationary excess above E−2
x , see

Figure 6. We can conclude from our calculations that the origin of ionization in Sgr B2 can

be, in principle, determined from the INTEGRAL observations. If these observations show

an excess of hard X-ray emission above the power-law ∝ E−2
x at large energies, then it is in

favour of the electron origin of hydrogen ionization. If not, then only the proton origin is

acceptable.
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8. Conclusion

The conclusion of this paper can be itemized as follows:

• The total mass and the gas distribution in the cloud Sgr B2 is highly uncertain.

Therefore we study two extreme cases: (1) when the mass is mainly distributed in

the relative low density outer envelope (nH ∼ 103 − 104 cm−3) with the radius about

22 pc (Model I), (2) when the most of the mass is concentrated in the dense core

(nH ∼ 105 cm−3) with the radius about 5 pc (Model II).

• We conclude that propagation of high energy particle in dense molecular clouds is

determined by the amplitude of magnetic fluctuations generated by turbulent motions

of neutral gas and their damping due to ion-neutral friction. In the outer envelope of

Sgr B2 (if it is) with the density about 103 − 104 cm−3 the kinetic energy of turbulent

motions is quite low and it does not generate fluctuations with amplitude higher than

the strength of large scale magnetic field, H0 ∼ 100 µG. Therefore we assume that

particles propagate their without scattering.

• In the dense core with the density about 105 cm−3 the neutral gas turbulence generates

fluctuations with the amplitude δH ≫ H0. Our estimations show that δH ∼ 500 µG

for the parameters of Sgr B2 core. Then, unlike previous models of CR propagation

in molecular clouds, we conclude that this process is determined by chaotic magnetic

fields generated by turbulent motions of the molecular gas in the core. The key

parameter of this process is the correlation length of the chaotic field, Lcorr which

determines diffusion propagation of particles inside the core. For the magnetized

particles the diffusion coefficient is constant in the relativistic energy range, and is

proportional to
√
E in the subrelativistic energy range. For the parameters of Sgr B2

the correlation length is about Lcorr ∼ 0.4 pc.
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• For the model of hydrogen ionization by subrelativistic protons we derived their

spectrum depending on the hydrogen density in the outer envelope. We showed that

the hydrogen ionization is provided by protons with the energy above 20 MeV. Their

energy density is about or above 50 eV cm−3.

• The spectrum of relativistic protons was derived from the observed gamma-ray flux of

Sgr B2. If the mass of the cloud is mainly distributed in the outer envelope with the

radius of 22 pc, then the energy density of these protons is about the same as near

Earth, i.e., 1 − 4 eV cm−3. If, however, most of mass is concentrated in the core with

the radius 5 pc then the required energy density of the protons is about 10 eV cm−3.

• We conclude that if subrelativistic protons are responsible for hydrogen ionization in

Sgr B2, they generate also the 6.4 keV line emission and continuum emission in the

X-ray energy range . 30 keV. The expected flux in the K-α iron line from Sgr B2 is

about 10−5 ph cm−2s−1, which is only three times below the line flux observed in 2013

by Suzaku. It was shown that the observed flux of the line from Sgr B2 was generated

by X-ray photons emitted by Sgr A* in the past. However, this flux is decreasing

rapidly and we expect that in near future we might observe a component of the 6.4

keV emission from Sgr B2 generated by CRs.

• The expected continuum X-ray emission generated by proton bremsstrahlung is about

I2−10
x = (4− 6)× 10−13 erg cm−2 s−1 in the range 2− 10 keV, and I20−60

x = 7.5× 10−13

erg cm−2 s−1 in the range 20 − 60 keV. Both fluxes are below the continuum fluxes

from Sgr B2 measured by Suzaku and INTEGRAL in 2009. However we expect that

the continuum X-ray fluxes might decrease to the level predicted by the model of

proton bremsstrahlung. It is highly desirable to get updated results from Suzaku and

INTEGRAL.

• Subrelativistic protons generate also de-excitation gamma-ray lines. However, the
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estimated flux of the C and O lines from Sgr B2 is too low for detection by present

gamma-ray telescopes. We hope that it may be a target for future gamma-ray

missions.

• Relativistic protons in Sgr B2 produce secondary electrons by pp collisions whose

density can be derived from the observed gamma ray flux. Thus, a flux on nonthermal

synchrotron radio emission is expected from Sgr B2. However, observations showed

that the flux of thermal radio emission was much higher than the estimated flux

of synchrotron emission. Therefore, it is problematic to subtract the nonthermal

component from the total Sgr B2 radio flux. However, unlike the thermal component,

the flux of synchrotron emission is polarized. We estimated the expected degree of

polarization of the nonthermal component. If the amplitude of the chaotic magnetic

fields excited by the turbulence of neutral gas is higher than the strength of large

scale magnetic fields in the halo, the degree of polarization is small, around 3 − 4%.

If the kinetic energy of turbulent motions is relatively small, the large scale fields are

not perturbed significantly by the turbulence. In this case the upper limit of linear

polarization of the synchrotron component may reach the level of 75%.

• An alternative model for hydrogen ionization in Sgr B2 is irradiation by high energy

electrons. The energy of these electrons should be around or above 1 MeV. These

electrons generate a bremsstrahlung X-ray emission with a spectrum ∝ E−1
x which is

harder than the emission from the Compton echo ∝ E−2
x as observed by Suzaku and

INTEGRAL. Therefore, we expect that the bremsstrahlung component can be seen at

high energies. Our estimations show that the calculated bremsstrahlung component

should be seen even in the 2009 data in the range 20-60 keV if it is generated by

electrons. If observations do not show any excess above the spectrum E−2, then it

is an argument against the leptonic origin of hydrogen ionization at least in Sgr B2,
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although more detailed analysis of the X-ray data after 2009 is needed.
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Fig. 4.— Spectrum of subrelativistic protons in the intercloud medium, needed for the rate

of ionization inside and outside Sgr B2 for different values of Emax. The number in the

brackets represent the estimated energy density of subrelativistic protons in eV cm−3. The

solid line (left side of the figure) represents spectra of subrelativistic protons for hard spectra

with δ = 0.2 that gives the value of Emax = 0.2 GeV (see Fig. 2). In this case almost all

particles freely penetrate through the envelope, and therefore the the required spectrum of

subrelativistic protons is the same independently of nH . The other three curve are shown

for Emax = 0.5 GeV and different values of nH . As follow from Figure 2 for this value of

Emax the spectra are relatively soft and therefore a part of particle is absorbed in the outer

envelope. This makes the result depended on nH as shown in the figure. The spectra of

relativistic protons are shown by shaded area for the case of outer envelope and the line

when the mass is concentrated in the core. Comments are presented in the text.
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Fig. 5.— Upper limit on the angular distribution of the radio emission at 330 MHz (solid

line) together with experimental data from Jones et al. (2011) (dotted line)
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Fig. 6.— Spectrum of hard X-ray emission observed by INTEGRAL from Terrier et al.

(2010). The bremsstrahlung emission of 10 MeV electrons for upper 107 M⊙ and lower 106

M⊙ limits of the mass of Sgr B2 (solid lines). The X-ray spectrum form Terrier et al. (2010)

is shown by dashed lines.
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