4,380 research outputs found

    Control of Formation-Flying Multi-Element Space Interferometers with Direct Interferometer-Output Feedback

    Get PDF
    The long-baseline space interferometer concept involving formation flying of multiple spacecrafts holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images

    Control of Formation-Flying Multi-Element Space Interferometers with Direct Interferometer-Output Feedback

    Get PDF
    The long-baseline space interferometer concept involving formation flying of multiple spacecraft holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images

    Ideal Desalination through Graphyne-4 Membrane: Nanopores for Quantized Water Transport

    Full text link
    Graphyne-4 sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13L/cm2/day/MPa, about 10 times higher than the state-of-the-art nanoporous graphene reported previously (Nano Lett.s 2012, 12, 3602-3608). In addition, the membrane entails very low energy consumption for producing 1m3 of fresh water, i.e., 3.6e-3 kWh/m3, three orders of magnitude less than the prevailing commercial membranes based on reverse osmosis. Water flow rate across the graphyne-4 sheet exhibits intriguing nonlinear dependence on the pore size owing to the quantized nature of water flow at the nanoscale. Such novel transport behavior has important implications to the design of highly effective and efficient desalination membranes

    Coexistence of multi-photon processes and longitudinal couplings in superconducting flux qubits

    Full text link
    In contrast to natural atoms, the potential energies for superconducting flux qubit (SFQ) circuits can be artificially controlled. When the inversion symmetry of the potential energy is broken, we find that the multi-photon processes can coexist in the multi-level SFQ circuits. Moreover, there are not only transverse but also longitudinal couplings between the external magnetic fields and the SFQs when the inversion symmetry of potential energy is broken. The longitudinal coupling would induce some new phenomena in the SFQs. Here we will show how the longitudinal coupling can result in the coexistence of multi-photon processes in a two-level system formed by a SFQ circuit. We also show that the SFQs can become transparent to the transverse coupling fields when the longitudinal coupling fields satisfy the certain conditions. We further show that the quantum Zeno effect can also be induced by the longitudinal coupling in the SFQs. Finally we clarify why the longitudinal coupling can induce coexistence and disappearance of single- and two-photon processes for a driven SFQ, which is coupled to a single-mode quantized field.Comment: 11 pages, 6 figure

    Spectrum of Relativistic and Subrelativistic Cosmic Rays in the 100 pc Central Region

    Get PDF
    From the rate of hydrogen ionization and the gamma ray flux, we derived the spectrum of relativistic and subrelativistic cosmic rays (CRs) nearby and inside the molecular cloud Sgr B2 near the Galactic Center (GC). We studied two cases of CR propagation in molecular clouds: free propagation and scattering of particles by magnetic fluctuations excited by the neutral gas turbulence. We showed that in the latter case CR propagation inside the cloud can be described as diffusion with the coefficient ∼3×1027\sim 3\times 10^{27} cm2^2 s−1^{-1}. For the case of hydrogen ionization by subrelativistic protons, we showed that their spectrum outside the cloud is quite hard with the spectral index δ>−1\delta>-1. The energy density of subrelativistic protons (>50>50 eV cm−3^{-3}) is one order of magnitude higher than that of relativistic CRs. These protons generate the 6.4 keV emission from Sgr B2, which was about 30\% of the flux observed by Suzaku in 2013. Future observations for the period after 2013 may discover the background flux generated by subrelativistic CRs in Sgr B2. Alternatively hydrogen ionization of the molecular gas in Sgr B2 may be caused by high energy electrons. We showed that the spectrum of electron bremsstrahlung is harder than the observed continuum from Sgr B2, and in principle this X-ray component provided by electrons could be seen from the INTEGRAL data as a stationary high energy excess above the observed spectrum Ex−2E_x^{-2}.Comment: 42 pages, 6 figures, accepted by Ap

    Abnormal magnetoresistance behavior in Nb thin film with rectangular antidot lattice

    Full text link
    Abnormal magnetoresistance behavior is found in superconducting Nb films perforated with rectangular arrays of antidots (holes). Generally magnetoresistance were always found to increase with increasing magnetic field. Here we observed a reversal of this behavior for particular in low temperature or current density. This phenomenon is due to a strong 'caging effect' which interstitial vortices are strongly trapped among pinned multivortices.Comment: 4 pages, 2 figure

    Topographical control of cell-cell interaction in C6 glioma by nanodot arrays

    Get PDF
    Nanotopography modulates the physiological behavior of cells and cell-cell interactions, but the manner of communication remains unclear. Cell networking (syncytium) of astroglia provides the optimal microenvironment for communication of the nervous system. C6 glioma cells were seeded on nanodot arrays with dot diameters ranging from 10 to 200 nm. Cell viability, morphology, cytoskeleton, and adhesion showed optimal cell growth on 50-nm nanodots if sufficient incubation was allowed. In particular, the astrocytic syncytium level maximized at 50 nm. The gap junction protein Cx43 showed size-dependent and time-dependent transport from the nucleus to the cell membrane. The transport efficiency was greatly enhanced by incubation on 50-nm nanodots. In summary, nanotopography is capable of modulating cell behavior and influencing the cell-cell interactions of astrocytes. By fine-tuning the nanoenvironment, it may be possible to regulate cell-cell communications and optimize the biocompatibility of neural implants

    Multi-wavelength emissions from the millisecond pulsar binary PSR J1023+0038 during an accretion active state

    Get PDF
    Recent observations strongly suggest that the millisecond pulsar binary PSR J1023+0038 has developed an accretion disk since 2013 June. We present a multi-wavelength analysis of PSR J1023+0038, which reveals that 1) its gamma-rays suddenly brightened within a few days in June/July 2013 and has remained at a high gamma-ray state for several months; 2) both UV and X-ray fluxes have increased by roughly an order of magnitude, and 3) the spectral energy distribution has changed significantly after the gamma-ray sudden flux change. Time variabilities associated with UV and X-rays are on the order of 100-500 seconds and 50-100 seconds, respectively. Our model suggests that a newly formed accretion disk due to the sudden increase of the stellar wind could explain the changes of all these observed features. The increase of UV is emitted from the disk, and a new component in gamma-rays is produced by inverse Compton scattering between the new UV component and pulsar wind. The increase of X-rays results from the enhancement of injection pulsar wind energy into the intra-binary shock due to the increase of the stellar wind. We also predict that the radio pulses may be blocked by the evaporated winds from the disk and the pulsar is still powered by rotation.Comment: 8 pages, 3 figures; accepted for publication in Ap
    • …
    corecore