1,431 research outputs found

    Optimising superoscillatory spots for far-field super-resolution imaging

    Get PDF
    Optical superoscillatory imaging, allowing unlabelled far-field super-resolution, has in recent years become reality. Instruments have been built and their super-resolution imaging capabilities demonstrated. The question is no longer whether this can be done, but how well: what resolution is practically achievable? Numerous works have optimised various particular features of superoscillatory spots, but in order to probe the limits of superoscillatory imaging we need to simultaneously optimise all the important spot features: those that define the resolution of the system. We simultaneously optimise spot size and its intensity relative to the sidebands for various fields of view, giving a set of best compromises for use in different imaging scenarios. Our technique uses the circular prolate spheroidal wave functions as a basis set on the field of view, and the optimal combination of these, representing the optimal spot, is found using a multi-objective genetic algorithm. We then introduce a less computationally demanding approach suitable for real-time use in the laboratory which, crucially, allows independent control of spot size and field of view. Imaging simulations demonstrate the resolution achievable with these spots. We show a three-order-of-magnitude improvement in the efficiency of focusing to achieve the same resolution as previously reported results, or a 26 % increase in resolution for the same efficiency of focusing

    Effect of inhomogeneities on the expansion rate of the Universe

    Full text link
    While the expansion rate of a homogeneous isotropic Universe is simply proportional to the square-root of the energy density, the expansion rate of an inhomogeneous Universe also depends on the nature of the density inhomogeneities. In this paper we calculate to second order in perturbation variables the expansion rate of an inhomogeneous Universe and demonstrate corrections to the evolution of the expansion rate. While we find that the mean correction is small, the variance of the correction on the scale of the Hubble radius is sensitive to the physical significance of the unknown spectrum of density perturbations beyond the Hubble radius.Comment: 19 pages, 2 figures Version 2 includes some changes in numerical factors and corrected typos. It is the version accepted for publication in Physical review

    Modulation of Midtropospheric CO_2 by the South Atlantic Walker Circulation

    Get PDF
    Midtropospheric CO_2 data from the Atmospheric Infrared Sounder (AIRS) are used in this study to explore the variability of CO_2 over the South Atlantic Ocean. It was found that the area-averaged CO_2 over the South Atlantic Ocean is less than that over South America by about 1 ppm during December–March. This CO_2 contrast is due to the large-scale vertical circulation over this region. During December–March, there is sinking motion over the South Atlantic Ocean. The sinking motion brings high-altitude air with a slightly lower concentration of CO_2 to the midtroposphere. Meanwhile, air rising over South America brings near-surface air with a higher concentration of CO_2 to the midtroposphere. As a result, the AIRS midtropospheric CO_2 concentration is lower over the South Atlantic Ocean than over South America during December–March. The detrended AIRS midtropospheric CO_2 difference correlates well with the inverted and detrended 400-hPa vertical pressure velocity difference between the South Atlantic and South America. Results obtained from this study demonstrate the strong impact of large-scale circulation on the vertical distribution of CO_2 in the free troposphere and suggest that midtropospheric CO_2 measurements can be used as an innovative observational constraint on the simulation of large-scale circulations in climate models

    Splitting of Long-Period Comet C/2018 F4 (PANSTARRS)

    Get PDF
    Long-period comet C/2018 F4 (PANSTARRS) was observed to show duplicity of its inner region in 2020 September, suggestive of a splitting event. We here present analyses of our observations of the comet taken from the LOOK project and the University of Hawaii 2.2 m telescope after the discovery of the splitting. The two fragments Components A and B, estimated to be  ⁣60\sim\!60 m to 4 km in radius, remained highly similar to each other in terms of brightness, colour, and dust morphology throughout our observing campaign from 2020 September to 2021 December. Our fragmentation model yielded that the two components split at a relative speed of 3.00±0.183.00 \pm 0.18 m s1^{-1} in 2020 late April, implying a specific energy change of (5.3±2.8)×103\left(5.3 \pm 2.8 \right) \times 10^3 J kg1^{-1}, and that Component B was subjected to a stronger nongravitational acceleration than Component A in both the radial and normal directions of the orbit. The obtained splitting time is broadly consistent with the result from the dust morphology analysis, which further suggested that the dominant dust grains were millimeter-sized and ejected at speed  ⁣2\sim\!2 m s1^{-1}. We postulate that the pre-split nucleus of the comet consisted of two lobes resembling the one of 67P, or that the comet used to be a binary system like main-belt comet 288P. Regardless, we highlight the possibility of using observations of split comets as a feasible manner to study the bilobate shape or binarity fraction of cometary nuclei.Comment: Accepted to AJ for publicatio

    Association between duration of gonadotrophin-releasing hormone agonist use and cardiovascular risks: A population-based competing-risk analysis

    Get PDF
    Background Although androgen deprivation therapy has known cardiovascular risks, it is unclear if its duration is related to cardiovascular risks. This study thus aimed to investigate the associations between gonadotrophin-releasing hormone (GnRH) agonist use duration and cardiovascular risks. Methods This retrospective cohort study included adult patients with prostate cancer receiving GnRH agonists in Hong Kong during 1999–2021. Patients who switched to GnRH antagonists, underwent bilateral orchidectomy, had <6 months of GnRH agonist, prior myocardial infarction (MI), or prior stroke was excluded. All patients were followed up until September 2021 for a composite endpoint of MI and stroke. Multivariable competing-risk regression using the Fine-Gray subdistribution model was used, with mortality from any cause as the competing event. Results In total, 4038 patients were analyzed (median age 74.9 years old, interquartile range (IQR) 68.7–80.8 years old). Over a median follow-up of 4.1 years (IQR 2.1–7.5 years), longer GnRH agonists use was associated with higher risk of the endpoint (sub-hazard ratio per year 1.04 [1.01–1.06], p = 0.001), with those using GnRH agonists for ≥2 years having an estimated 23% increase in the sub-hazard of the endpoint (sub-hazard ratio 1.23 [1.04–1.46], p = 0.017). Conclusion Longer GnRH agonist use may be associated with greater cardiovascular risks

    High Energy Neutrinos From Superheavy Dark Matter Annihilation

    Get PDF
    Superheavy (M>1010M>10^{10} GeV) particles produced during inflation may be the dark matter, independent of their interaction strength. Strongly interacting superheavy particles will be captured by the sun, and their annihilation in the center of the sun will produce a flux of energetic neutrinos that should be detectable by neutrino telescopes. Depending on the particle mass, event rates in a cubic-kilometer detector range from several per hour to several per year. The signature of the process is a predominance of tau neutrinos, with a relatively flat energy spectrum of events ranging from 50 GeV to many TeV, and with the mean energy of detected tau neutrinos about 3 TeV.Comment: 24 pages, 7 figure

    Modulation of Midtropospheric CO_2 by the South Atlantic Walker Circulation

    Get PDF
    Midtropospheric CO_2 data from the Atmospheric Infrared Sounder (AIRS) are used in this study to explore the variability of CO_2 over the South Atlantic Ocean. It was found that the area-averaged CO_2 over the South Atlantic Ocean is less than that over South America by about 1 ppm during December–March. This CO_2 contrast is due to the large-scale vertical circulation over this region. During December–March, there is sinking motion over the South Atlantic Ocean. The sinking motion brings high-altitude air with a slightly lower concentration of CO_2 to the midtroposphere. Meanwhile, air rising over South America brings near-surface air with a higher concentration of CO_2 to the midtroposphere. As a result, the AIRS midtropospheric CO_2 concentration is lower over the South Atlantic Ocean than over South America during December–March. The detrended AIRS midtropospheric CO_2 difference correlates well with the inverted and detrended 400-hPa vertical pressure velocity difference between the South Atlantic and South America. Results obtained from this study demonstrate the strong impact of large-scale circulation on the vertical distribution of CO_2 in the free troposphere and suggest that midtropospheric CO_2 measurements can be used as an innovative observational constraint on the simulation of large-scale circulations in climate models

    Movement of Walleyes in Lakes Erie and St. Clair Inferred from Tag Return and Fisheries Data

    Full text link
    Lake Erie walleyes Sander vitreus support important fisheries and have been managed as one stock, although preliminary tag return and genetic analyses suggest the presence of multiple stocks that migrate among basins within Lake Erie and into other portions of the Great Lakes. We examined temporal and spatial movement and abundance patterns of walleye stocks in the three basins of Lake Erie and in Lake St. Clair with the use of tag return and sport and commercial catchâ perâ unit effort (CPUE) data from 1990 to 2001. Based on summer tag returns, western basin walleyes migrated to the central and eastern basins of Lake Erie and to Lake St. Clair and southern Lake Huron, while fish in the central and eastern basins of Lake Erie and in Lake St. Clair were primarily caught within the basins where they were tagged. Seasonal changes in sport and commercial effort and CPUE in Lake Erie confirmed the walleye movements suggested by tag return data. Walleyes tagged in the western basin but recaptured in the central or eastern basin of Lake Erie were generally larger (or older) than those recaptured in the western basin of Lake Erie or in Lake St. Clair. Within spawning stocks, female walleyes had wider ranges of movement than males and there was considerable variation in movement direction, minimum distance moved (mean distance between tagging sites and recapture locations), and mean length among individual spawning stocks. Summer temperatures in the western basin often exceeded the optimal temperature (20â 23°C) for growth of large walleyes, and the migration of western basin walleyes might represent a sizeâ dependent response to warm summer temperatures. Cooler temperatures and abundant softâ rayed fish probably contributed to an energetically favorable foraging habitat in the central and eastern basins that attracted large walleyes during summer.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141620/1/tafs0539.pd

    Acute Encephalopathy Associated with Influenza A Infection in Adults

    Get PDF
    We report acute encephalopathy associated with influenza A infection in 3 adults. We detected high cerebrospinal fluid (CSF) and plasma concentrations of CXCL8/IL-8 and CCL2/MCP-1 (CSF/plasma ratios >3), and interleukin-6, CXCL10/IP-10, but no evidence of viral neuroinvasion. Patients recovered without sequelae. Hyperactivated cytokine response may play a role in pathogenesis
    corecore