806 research outputs found

    Quantum Monte Carlo calculations of A=9,10A=9,10 nuclei

    Get PDF
    We report on quantum Monte Carlo calculations of the ground and low-lying excited states of A=9,10A=9,10 nuclei using realistic Hamiltonians containing the Argonne v18v_{18} two-nucleon potential alone or with one of several three-nucleon potentials, including Urbana IX and three of the new Illinois models. The calculations begin with correlated many-body wave functions that have an α\alpha-like core and multiple p-shell nucleons, LSLS-coupled to the appropriate (Jπ;T)(J^{\pi};T) quantum numbers for the state of interest. After optimization, these variational trial functions are used as input to a Green's function Monte Carlo calculation of the energy, using a constrained path algorithm. We find that the Hamiltonians that include Illinois three-nucleon potentials reproduce ten states in 9^9Li, 9^9Be, 10^{10}Be, and 10^{10}B with an rms deviation as little as 900 keV. In particular, we obtain the correct 3+^+ ground state for 10^{10}B, whereas the Argonne v18v_{18} alone or with Urbana IX predicts a 1+^+ ground state. In addition, we calculate isovector and isotensor energy differences, electromagnetic moments, and one- and two-body density distributions.Comment: 28 pages, 12 tables, 7 figure

    Level structure of 99Nb

    Get PDF
    The β decay of 97Sr to 97Y has been investigated using ion-guide on-line mass separation and a 10 Ge-detector array to record γ−γ coincidences to a detection limit well below that of former studies. Similarities are found in the β-decay patterns of 99Zr and of its isotone 97Sr and also in the γ-ray decay rates and branchings of the corresponding levels in their respective daughters 99Nb and 97Y. This indicates a persisting influence of the d5/2 neutron shell closure for 99Nb. The level structure of 99Nb and the β-feeding pattern are discussed in the frame of the interacting boson-fermion plus broken pair model and the microscopic quasiparticle phonon model

    Prompt D-0, D+, and D*(+) production in Pb-Pb collisions at root S-NN=5.02 TeV

    Get PDF
    The production of prompt D-0, D+, and D*(+) mesons was measured at midrapidity (vertical bar y vertical bar < 0.5) in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair root S-NN = 5.02 TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decay channels and their production yields were measured in central (0-10%) and semicentral (30-50%) collisions. The measurement was performed up to a transverse momentum (p(T)) of 36 or 50 GeV/c depending on the D meson species and the centrality interval. For the first time in Pb-Pb collisions at the LHC, the yield of D-0 mesons was measured down to p(T) = 0, which allowed a model-independent determination of the p(T)-integrated yield per unit of rapidity (dN/dy). A maximum suppression by a factor 5 and 2.5 was observed with the nuclear modification factor (R-AA) of prompt D mesons at p(T) = 6-8 GeV/c for the 0-10% and 30-50% centrality classes, respectively. The D-meson R-AA is compared with that of charged pions, charged hadrons, and J/psi mesons as well as with theoretical predictions. The analysis of the agreement between the measured R-AA, elliptic (v(2)) and triangular (v(3)) flow, and the model predictions allowed us to constrain the charm spatial diffusion coefficient D-s. Furthermore the comparison of R-AA and v(2) with different implementations of the same models provides an important insight into the role of radiative energy loss as well as charm quark recombination in the hadronisation mechanisms.Peer reviewe

    Forward rapidity J/psi production as a function of charged-particle multiplicity in pp collisions at root s=5.02 and 13 TeV

    Get PDF
    The production of J/psi is measured as a function of charged-particle multiplicity at forward rapidity in proton-proton (pp) collisions at center-of-mass energies root s = 5.02 and 13 TeV. The J/psi mesons are reconstructed via their decay into dimuons in the rapidity interval (2.5 ), at both the colliding energies. Measurements are compared with available ALICE results at midrapidity and theoretical model calculations. First measurement of the mean transverse momentum () of J/psi in pp collisions exhibits an increasing trend as a function of dN(ch)/d eta/ showing a saturation towards high charged-particle multiplicities.Peer reviewe

    Investigating charm production and fragmentation via azimuthal correlations of prompt D mesons with charged particles in pp collisions at root s=13 TeV

    Get PDF
    Angular correlations of heavy-flavour and charged particles in high-energy proton-proton collisions are sensitive to the production mechanisms of heavy quarks and to their fragmentation as well as hadronisation processes. The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in proton-proton collisions at a centre-of-mass energy of root s = 13 TeV with the ALICE detector is reported, considering D-0, D+, and D*(+) mesons in the transverse-momentum interval 3 0.3 GeV/c and pseudorapidity vertical bar eta vertical bar < 0.8. This measurement has an improved precision and provides an extended transverse-momentum coverage compared to previous ALICE measurements at lower energies. The study is also performed as a function of the charged-particle multiplicity, showing no modifications of the correlation function with multiplicity within uncertainties. The properties and the transverse-momentum evolution of the near- and awayside correlation peaks are studied and compared with predictions from various Monte Carlo event generators. Among those considered, PYTHIA8 and POWHEG+PYTHIA8 provide the best description of the measured observables. The obtained results can provide guidance on tuning the generators.Peer reviewe

    Measurement of prompt D-s(+)-meson production and azimuthal anisotropy in Pb-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    The production yield and angular anisotropy of prompt D-s(+) mesons were measured as a function of transverse momentum (p(T)) in Pb-Pb collisions at a centre-of-mass energy per nucleon pair root s(NN) = 5.02 TeV collected with the ALICE detector at the LHC. D-s(+) mesons and their charge conjugates were reconstructed at midrapidity (vertical bar y vertical bar phi pi(+), with phi -> K-K+, in the p(T) intervals 2 10 GeV/c, the measured D-s(+)-meson nuclear modification factor R-AA is consistent with the one of non-strange D mesons within uncertainties, while at lower p(T) a hint for a D-s(+)-meson R-AA larger than that of non-strange D mesons is seen. The enhanced production of D-s(+) relative to non-strange D mesons is also studied by comparing the p(T)-dependent D-s(+)/D-0 production yield ratios in Pb-Pb and in pp collisions. The ratio measured in Pb-Pb collisions is found to be on average higher than that in pp collisions in the interval 2 < p(T) < 8 GeV/c with a significance of 2.3 sigma and 2.4 sigma for the 0-10% and 30-50% centrality intervals. The azimuthal anisotropy coefficient v(2) of prompt D-s(+) mesons was measured in Pb-Pb collisions in the 30-50% centrality interval and is found to be compatible with that of non-strange D mesons. The main features of the measured R-AA, D-s(+)/D-0 ratio, and v(2) as a function of p(T) are described by theoretical calculations of charm-quark transport in a hydrodynamically expanding quark-gluon plasma including hadronisation via charm-quark recombination with light quarks from the medium. The p(T)-integrated production yield of D-s(+) mesons is compatible with the prediction of the statistical hadronisation model. (c) 2022 European Organization for Nuclear Research, ALICE. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).Peer reviewe

    Production of light (anti)nuclei in pp collisions at root s=13 TeV

    Get PDF
    Understanding the production mechanism of light (anti)nuclei is one of the key challenges of nuclear physics and has important consequences for astrophysics, since it provides an input for indirect dark-matter searches in space. In this paper, the latest results about the production of light (anti)nuclei in pp collisions at root s = 13TeV are presented, focusing on the comparison with the predictions of coalescence and thermal models. For the first time, the coalescence parameters B-2 for deuterons and B-3 for helions are compared with parameter-free theoretical predictions that are directly constrained by the femtoscopic measurement of the source radius in the same event class. A fair description of the data with a Gaussian wave function is observed for both deuteron and helion, supporting the coalescence mechanism for the production of light (anti)nuclei in pp collisions. This method paves the way for future investigations of the internal structure of more complex nuclear clusters, including the hypertriton.Peer reviewe
    corecore