3,632 research outputs found

    Electronic density of states derived from thermodynamic critical field curves for underdoped La-Sr-Cu-O

    Full text link
    Thermodynamic critical field curves have been measured for La2xSrxCuO4+δLa_{2-x}Sr_{x}CuO_{4+\delta} over the full range of carrier concentrations where superconductivity occurs in order to determine changes in the normal state density of states with carrier concentration. There is a substantial window in the HTH-T plane where the measurements are possible because the samples are both thermodynamically reversible and the temperature is low enough that vortex fluctuations are not important. In this window, the data fit Hao-Clem rather well, so this model is used to determine HcH_c and κc\kappa_c for each temperature and carrier concentration. Using N(0) and the ratio of the energy gap to transition temperature, Δ(0)/kBTc\Delta (0)/k_BT_c, as fitting parameters, the HcvsTH_c vs T curves give Δ(0)/kBTc2.0\Delta (0)/k_BT_c \sim 2.0 over the whole range of xx. Values of N(0) remain rather constant in the optimum-doped and overdoped regime, but drops quickly toward zero in the underdoped regime.

    Construction of the Hill48 and Yld89 for Auto-body Steel Sheets considering the Strain Rate

    Get PDF
    This paper deals with the anisotropic material properties and the initial yield locus considering the strain rate. Uni-axial tensile tests are performed with variation of the strain rate in order to obtain flow stress curves and the tensile properties. The R-values have been measured with a high speed camera by analyzing the deformation history during the tensile test. Anisotropy of auto-body steel sheets have been described by using Hill48 and Yld89 (Barlat89) yield functions according to the strain rate ranged from 0.001/sec to 100/sec. Hill48 and Yld89 yield loci of auto-body steel sheets at various strain rates have been constructed in order to visualize the initial yield state. The performance of two yield criteria is evaluated by comparing yield loci constructed in the principal stress plane. The initial yield locus becomes different from the static one when the strain rate is considered to describe the anisotropy of the steel sheets

    Modulated structures in electroconvection in nematic liquid crystals

    Full text link
    Motivated by experiments in electroconvection in nematic liquid crystals with homeotropic alignment we study the coupled amplitude equations describing the formation of a stationary roll pattern in the presence of a weakly-damped mode that breaks isotropy. The equations can be generalized to describe the planarly aligned case if the orienting effect of the boundaries is small, which can be achieved by a destabilizing magnetic field. The slow mode represents the in-plane director at the center of the cell. The simplest uniform states are normal rolls which may undergo a pitchfork bifurcation to abnormal rolls with a misaligned in-plane director.We present a new class of defect-free solutions with spatial modulations perpendicular to the rolls. In a parameter range where the zig-zag instability is not relevant these solutions are stable attractors, as observed in experiments. We also present two-dimensionally modulated states with and without defects which result from the destabilization of the one-dimensionally modulated structures. Finally, for no (or very small) damping, and away from the rotationally symmetric case, we find static chevrons made up of a periodic arrangement of defect chains (or bands of defects) separating homogeneous regions of oblique rolls with very small amplitude. These states may provide a model for a class of poorly understood stationary structures observed in various highly-conducting materials ("prechevrons" or "broad domains").Comment: 13 pages, 13 figure

    Financial feasibility and social acceptance for reducing nuclear power plants: A contingent valuation study

    Get PDF
    Social acceptance of nuclear power has become a decisive factor in framing a sustainable energy policy. This study examines social acceptance for cancelling the construction of planned nuclear power plants (NPPs) and rep

    Likelihood Geometry

    Full text link
    We study the critical points of monomial functions over an algebraic subset of the probability simplex. The number of critical points on the Zariski closure is a topological invariant of that embedded projective variety, known as its maximum likelihood degree. We present an introduction to this theory and its statistical motivations. Many favorite objects from combinatorial algebraic geometry are featured: toric varieties, A-discriminants, hyperplane arrangements, Grassmannians, and determinantal varieties. Several new results are included, especially on the likelihood correspondence and its bidegree. These notes were written for the second author's lectures at the CIME-CIRM summer course on Combinatorial Algebraic Geometry at Levico Terme in June 2013.Comment: 45 pages; minor changes and addition

    Carbon contamination topography analysis of EUV masks

    Get PDF
    The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data

    Three-dimensional pattern formation, multiple homogeneous soft modes, and nonlinear dielectric electroconvection

    Full text link
    Patterns forming spontaneously in extended, three-dimensional, dissipative systems are likely to excite several homogeneous soft modes (\approx hydrodynamic modes) of the underlying physical system, much more than quasi one- and two-dimensional patterns are. The reason is the lack of damping boundaries. This paper compares two analytic techniques to derive the patten dynamics from hydrodynamics, which are usually equivalent but lead to different results when applied to multiple homogeneous soft modes. Dielectric electroconvection in nematic liquid crystals is introduced as a model for three-dimensional pattern formation. The 3D pattern dynamics including soft modes are derived. For slabs of large but finite thickness the description is reduced further to a two-dimensional one. It is argued that the range of validity of 2D descriptions is limited to a very small region above threshold. The transition from 2D to 3D pattern dynamics is discussed. Experimentally testable predictions for the stable range of ideal patterns and the electric Nusselt numbers are made. For most results analytic approximations in terms of material parameters are given.Comment: 29 pages, 2 figure
    corecore