17 research outputs found

    Cu doping effects on the electronic structure of Fe1-xCuxSe

    Full text link
    Using angle-resolved photoemission spectroscopy (ARPES), we studied the evolution of the electronic structure of Fe1-xCuxSe from x = 0 to 0.10. We found that the Cu dopant introduces extra electron carriers. The hole bands near the gamma point are observed to steadily shift downward with increasing doping and completely sink down below the Fermi level (EF) for x > 0.05. Meanwhile, the electron pocket near the M point becomes larger but loses the spectral weight near EF. We also observed that effective mass of the electron band near the M point increases with doping. Our result explains why superconductivity disappears and metal insulator transition (MIT) like behavior occurs upon Cu doping in terms of electronic structure, and provide insight into emergent magnetic fluctuation in Fe1-xCuxSe

    Effect of the sample work function on alkali metal dosing induced electronic structure change

    Full text link
    Alkali metal dosing (AMD) has been widely used as a way to control doping without chemical substitution. This technique, in combination with angle resolved photoemission spectroscopy (ARPES), often provides an opportunity to observe unexpected phenomena. However, the amount of transferred charge and the corresponding change in the electronic structure vary significantly depending on the material. Here, we report study on the correlation between the sample work function and alkali metal induced electronic structure change for three iron-based superconductors: FeSe, Ba(Fe0.94_{0.94}Co0.06_{0.06})2_{2}As2_{2} and NaFeAs which share a similar Fermi surface topology. Electronic structure change upon monolayer of alkali metal dosing and the sample work function were measured by ARPES. Our results show that the degree of electronic structure change is proportional to the difference between the work function of the sample and Mulliken's absolute electronegativity of the dosed alkali metal. This finding provides a possible way to estimate the AMD induced electronic structure change.Comment: 4 page

    Deep learning-based statistical noise reduction for multidimensional spectral data

    Full text link
    In spectroscopic experiments, data acquisition in multi-dimensional phase space may require long acquisition time, owing to the large phase space volume to be covered. In such case, the limited time available for data acquisition can be a serious constraint for experiments in which multidimensional spectral data are acquired. Here, taking angle-resolved photoemission spectroscopy (ARPES) as an example, we demonstrate a denoising method that utilizes deep learning as an intelligent way to overcome the constraint. With readily available ARPES data and random generation of training data set, we successfully trained the denoising neural network without overfitting. The denoising neural network can remove the noise in the data while preserving its intrinsic information. We show that the denoising neural network allows us to perform similar level of second-derivative and line shape analysis on data taken with two orders of magnitude less acquisition time. The importance of our method lies in its applicability to any multidimensional spectral data that are susceptible to statistical noise.Comment: 8 pages, 8 figure

    Quantum electron liquid and its possible phase transition

    Full text link
    Purely quantum electron systems exhibit intriguing correlated electronic phases by virtue of quantum fluctuations in addition to electron-electron interactions. To realize such quantum electron systems, a key ingredient is dense electrons decoupled from other degrees of freedom. Here, we report the discovery of a pure quantum electron liquid, which spreads up to ~ 3 {\AA} in the vacuum on the surface of electride crystal. An extremely high electron density and its weak hybridisation with buried atomic orbitals evidence the quantum and pure nature of electrons, that exhibit a polarized liquid phase as demonstrated by our spin-dependent measurement. Further, upon enhancing the electron correlation strength, the dynamics of quantum electrons changes to that of non-Fermi liquid along with an anomalous band deformation, suggestive of a transition to a hexatic liquid crystal phase. Our findings cultivate the frontier of quantum electron systems, and serve as a platform for exploring correlated electronic phases in a pure fashion.Comment: 29 pages, 4 figures, 10 extended data figure

    Sign-tunable anomalous Hall effect induced by two-dimensional symmetry-protected nodal structures in ferromagnetic perovskite oxide thin films

    Full text link
    Magnetism and spin-orbit coupling (SOC) are two quintessential ingredients underlying novel topological transport phenomena in itinerant ferromagnets. When spin-polarized bands support nodal points/lines with band degeneracy that can be lifted by SOC, the nodal structures become a source of Berry curvature; this leads to a large anomalous Hall effect (AHE). Contrary to three-dimensional systems that naturally host nodal points/lines, two-dimensional (2D) systems can possess stable nodal structures only when proper crystalline symmetry exists. Here we show that 2D spin-polarized band structures of perovskite oxides generally support symmetry-protected nodal lines and points that govern both the sign and the magnitude of the AHE. To demonstrate this, we performed angle-resolved photoemission studies of ultrathin films of SrRuO3_3, a representative metallic ferromagnet with SOC. We show that the sign-changing AHE upon variation in the film thickness, magnetization, and chemical potential can be well explained by theoretical models. Our study is the first to directly characterize the topological band structure of 2D spin-polarized bands and the corresponding AHE, which could facilitate new switchable devices based on ferromagnetic ultrathin films

    Electronic band structure of (111) SrRuO3SrRuO_{3} thin film-an angle-resolved photoemission spectroscopy study

    Full text link
    We studied the electronic band structure of pulsed laser deposition (PLD) grown (111)-oriented SrRuO3_3 (SRO) thin films using \textit{in situ} angle-resolved photoemission spectroscopy (ARPES) technique. We observed previously unreported, light bands with a renormalized quasiparticle effective mass of about 0.8mem_{e}. The electron-phonon coupling underlying this mass renormalization yields a characteristic "kink" in the band dispersion. The self-energy analysis using the Einstein model suggests five optical phonon modes covering an energy range 44 to 90 meV contribute to the coupling. Besides, we show that the quasiparticle spectral intensity at the Fermi level is considerably suppressed, and two prominent peaks appear in the valance band spectrum at binding energies of 0.8 eV and 1.4 eV, respectively. We discuss the possible implications of these observations. Overall, our work demonstrates that high-quality thin films of oxides with large spin-orbit coupling can be grown along the polar (111) orientation by the PLD technique, enabling \textit{in situ} electronic band structure study. This could allow for characterizing the thickness-dependent evolution of band structure of (111) heterostructures-a prerequisite for exploring possible topological quantum states in the bilayer limit

    Magnetic field detwinning in feTe

    No full text
    © 2019, Korea Institute of Applied Superconductivity and Cryogenics. All rights reserved.Iron-based superconductors (IBSs) possess nematic phases in which rotational symmetry of the electronic structure is spontaneously broken. This novel phase has attracted much attention as it is believed to be closely linked to the superconductivity. However, observation of the symmetry broken phase by using a macroscopic experimental tool is a hard task because of naturally formed twin domains. Here, we report on a novel detwinning method by using a magnetic field on FeTe single crystal. Detwinning effect was measured by resistivity anisotropy using the Montgomery method. Our results show that FeTe was detwinned at 2T, which is a relatively weak field compared to the previously reported result. Furthermore, detwinning effect is retained even when the field is turned off after field cooling, making it an external stimulation-free detwinning metho

    Cu doping effects on the electronic structure of Fe1-x CuxSe

    No full text
    Using angle-resolved photoemission spectroscopy, we investigated the evolution of the electronic structure of Fe1-xCuxSe from x=0 to 0.10. We found that the substitution of Fe by Cu introduces extra electron carriers. The hole bands near the Γ point were observed to shift downward with increasing doping x and completely sank down below the Fermi level (EF) for x≥0.05. Meanwhile, the electron pockets near the M point became larger but lost the spectral weight near EF. Concomitantly, the effective mass of the electron bands increased with doping. Our results show how a metal-insulator transition behavior occurs upon Cu doping in view of the electronic structure and provide a platform to further investigation on the origin of emergent magnetic fluctuation in Fe1-xCuxSe.11Nsciescopu
    corecore