5 research outputs found

    Comparative transcriptome analysis on wild-simulated ginseng of different age revealed possible mechanism of ginsenoside accumulation

    No full text
    Panax ginseng is one of the most famous pharmaceutical plants in Asia. Ginseng plants grown in mountain have longer longevity which ensures higher accumulation of ginsenoside components than those grown in farms. However, wild-simulated ginseng over certain age cannot be easily distinguished in morphology. To identify transcriptomic mechanism of ginsenoside accumulation in older wild-simulated ginseng without large phenotype change, we performed comparative transcriptome analysis for leaf, shoot, and root tissues of 7-yr-old and 13yr-old wild-simulated ginseng. Of 559 differentially expressed genes (DEGs) in comparison between 7-yr-old and 13yr-old wild-simulated ginseng, 280 leaf-, 103 shoot-, and 164 root-mainly expressing genes were found to be changed in transcript level according to age. Functional analysis revealed that pentose-phosphate shunt and abscisic acid responsive genes were up-regulated in leaf tissues of 7-yr-old ginseng while defense responsive genes were up-regulated in root tissues of 13-yr-old ginseng. Quantitative real-time PCR revealed that jasmonic acid responsive genes, ERDL6, and some UGTs were up-regulated in 13-yr-old ginseng in higher order lateral root tissues. These data suggest that bacterial stimulation in mountain region can enhance the expression of several genes which might support minor ginsenoside biosynthesis. © 2023 Elsevier Masson SAS11Nsciescopu

    Application of Deep Reinforcement Learning to Dynamic Verification of DRAM Designs

    No full text
    This paper presents a deep neural network based test vector generation method for dynamic verification of memory devices. The proposed method is built on reinforcement learning framework, where the action is input stimulus on device pins and the reward is coverage score of target circuitry. The developed agent efficiently explores high-dimensional and large action space by using policy gradient method with ??-nearest neighbor search, transfer learning, and replay buffer. The generated test vectors attained the coverage score of 100% for fifteen representative circuit blocks of modern DRAM design. The output vector length was only 7% of the human-created vector length

    Inhibition of Soluble Epoxide Hydrolase Activity by Components of <i>Glycyrrhiza uralensis</i>

    No full text
    Soluble epoxide hydrolase (sEH) is a target enzyme for the treatment of inflammation and cardiovascular disease. A Glycyrrhiza uralensis extract exhibited ~50% inhibition of sEH at 100 μg/mL, and column chromatography yielded compounds 1–11. Inhibitors 1, 4–6, 9, and 11 were non-competitive; inhibitors 3, 7, 8, and 10 were competitive. The IC50 value of inhibitor 10 was below 2 μM. Molecular simulation was used to identify the sEH binding site. Glycycoumarin (10) requires further evaluation in cells and animals

    A Novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells

    No full text
    The variability in the prognosis of individuals with hepatocellular carcinoma (HCC) suggests that HCC may comprise several distinct biological phenotypes. These phenotypes may result from activation of different oncogenic pathways during tumorigenesis and/or from a different cell of origin. Here we address whether the transcriptional characteristics of HCC can provide insight into the cellular origin of the tumor. We integrated gene expression data from rat fetal hepatoblasts and adult hepatocytes with HCC from human and mouse models. Individuals with HCC who shared a gene expression pattern with fetal hepatoblasts had a poor prognosis. The gene expression program that distinguished this subtype from other types of HCC included markers of hepatic oval cells, suggesting that HCC of this subtype may arise from hepatic progenitor cells. Analyses of gene networks showed that activation of AP-1 transcription factors in this newly identified HCC subtype might have key roles in tumor development
    corecore