7 research outputs found

    Coastal windstorms create unsteady, unpredictable storm surges in a fluvial Maine estuary

    Get PDF
    Storm surges create coastal flooding that can be damaging to life and property. In estuaries with significant river influence (fluvial), it is possible for tides, storm surge, and river discharge to interact and enhance surges relative to the immediate coast. These tide-surge-river interactions were previously identified in a fluvial Maine estuary as higher frequency (\u3efour cycles per day) oscillations to storm surge which were proposed to be incited by enhanced friction and resonance during certain windstorm events (Spicer et al. 2019). The relative contributions to tide-surge-river interaction from atmospheric forcing variables (wind, barometric pressure, and externally generated surge) remains unclear. This work seeks to decompose and analyze a recent windstorm surge event to better isolate the effects of atmospheric forcing on tidesurge-river interaction. Results show total storm surges in the fluvial estuary to be two times larger than at the estuary mouth because of tide-surge-river interaction. Analysis indicated at least 50% of the magnitude of tide-surge-river interactions are created by non-tidal forcing, in the form of wind, enhancing frictional energy in the estuary. The remaining tide-surge-river interaction is likely a result of changes in tidal wave propagation speed due to surge deepening the mean estuary water level

    Wind Effects on Near- and Midfield Mixing in Tidally Pulsed River Plumes

    Get PDF
    River plumes transport and mix land-based tracers into the ocean. In tidally pulsed river plumes, wind effects have long been considered negligible in modulating interfacial mixing in the energetic nearfield region. This research tests the influence of variable, realistic winds on mixing in the interior plume. A numerical model of the Merrimack River plume-shelf system is utilized, with an application of the salinity variance approach employed to identify spatial and temporal variation in advection, straining, and dissipation (mixing) of vertical salinity variance (stratification). Results indicate that moderate wind stresses (∼0.5 Pa) with a northward component countering the downcoast rotation of the plume are most effective at decreasing stratification in the domain relative to other wind conditions. Northward winds advect plume and ambient shelf stratification offshore, allowing shelf water salinity to increase in the nearshore, which strengthens the density gradient at the plume base. Straining in the plume increases with winds enhancing offshore-directed surface velocities, leading to increased shear at the plume base. Increased straining and larger density gradients at the plume base enhance variance dissipation in the near- and midfield plume, and dissipation remains enhanced if the shelf is clear of residual stratification. The smaller spatial and temporal scales of the Merrimack plume allow the mechanisms to occur at tidal time scales in direct response to instantaneous winds. This is the first study to show tidal time scale wind-induced straining and advection as controlling factors on near- and midfield mixing rates in river plumes under realistic winds

    Freshwater Composition and Connectivity of the Connecticut River Plume During Ambient Flood Tides

    Get PDF
    The Connecticut River plume interacts with the strong tidal currents of the ambient receiving waters in eastern Long Island Sound. The plume formed during ambient flood tides is studied as an example of tidal river plumes entering into energetic ambient tidal environments in estuaries or continental shelves. Conservative passive freshwater tracers within a high-resolution nested hydrodynamic model are applied to determine how source waters from different parts of the tidal cycle contribute to plume composition and interact with bounding plume fronts. The connection to source waters can be cut off only under low-discharge conditions, when tides reverse surface flow through the mouth after max ambient flood. Upstream plume extent is limited because ambient tidal currents arrest the opposing plume propagation, as the tidal internal Froude number exceeds one. The downstream extent of the tidal plume always is within 20 km from the mouth, which is less than twice the ambient tidal excursion. Freshwaters in the river during the preceding ambient ebb are the oldest found in the new flood plume. Connectivity with source waters and plume fronts exhibits a strong upstream-to- downstream asymmetry. The arrested upstream front has high connectivity, as all freshwaters exiting the mouth immediately interact with this boundary. The downstream plume front has the lowest overall connectivity, as interaction is limited to the oldest waters since younger interior waters do not overtake this front. The offshore front and inshore boundary exhibit a downstream progression from younger to older waters and decreasing overall connectivity with source waters. Plume-averaged freshwater tracer concentrations and variances both exhibit an initial growth period followed by a longer decay period for the remainder of the tidal period. The plume-averaged tracer variance is increased by mouth inputs, decreased by entrainment, and destroyed by internal mixing. Peak entrainment velocities for younger waters are higher than values for older waters, indicating stronger entrainment closer to the mouth. Entrainment and mixing time scales (1–4 h at max ambient flood) are both shorter than half a tidal period, indicating entrainment and mixing are vigorous enough to rapidly diminish tracer variance within the plume

    Observations of Near-Surface Mixing Behind a Headland

    No full text
    Field observations were collected near the mouth of the Bagaduce River, Maine, in order to understand how complex features affect the intratidal and lateral variability of turbulence and vertical mixing. The Bagaduce River is a low-inflow, macrotidal estuary that features tidal islands, tidal flats and sharp channel bends. Profiles of salinity, temperature, and turbulent kinetic energy dissipation (ε) were collected for a tidal cycle across the estuary with a microstructure profiler. Lateral distributions of current velocities were obtained with an acoustic doppler current profiler. Results showed intratidal asymmetries in bottom-generated vertical eddy diffusivity and viscosity, with larger values occurring on ebb (Kz: 10−2 m2; Az: 10−2 m2/s) compared to flood (Kz: 10−5 m2/s; Az: 10−4 m2/s). Bottom-generated mixing was moderated by the intrusion of stratified water on flood, which suppressed mixing. Elevated mixing (Kz: 10−3 m2; Az: 10−2.5 m2/s) occurred in the upper water column in the lee of a small island and was decoupled from the bottom layer. The near-surface mixing was a product of an eddy formed downstream of a headland, which tended to reinforce vertical shear by laterally straining streamwise velocities. These results are the first to show near-surface mixing caused by vertical vorticity induced by an eddy, rather than previously reported streamwise vorticity associated with lateral circulation

    Aquaculture farms as nature-based coastal protection: Random wave attenuation by suspended and submerged canopies

    No full text
    As the frequency and intensity of storms increase, a growing need exists for resilient shore protection techniques that have both environmental and economic benefits. In addition to producing seafood, aquaculture farms may also provide coastal protection benefits either alone or with other nature-based structures. In this paper, a generalized three-layer frequency dependent theoretical model is derived for random wave attenuation due to presence of biomass within the water column. The biomass can be characterized as submerged, emerged, suspended and floating canopies that can consist of natural aquatic vegetation with potential aquaculture systems of kelp or mussels. The present analytical solutions can reduce to the solutions by Mendez and Losada (2004), Chen and Zhao (2012) and Jacobsen et al. (2019) for submerged rigid aquatic vegetation. The present theoretical model incorporates the motion of these canopies using a cantilever-beam model for slender components and a buoy-on-rope model for elements with concentrated mass and buoyancy. Analytical results are compared with existing laboratory and field datasets for submerged and suspended canopies. The theoretical model was then used (in a case study at a field site in Northeastern US) to investigate the capacity of suspended mussel farms with submerged aquatic vegetation (SAV) to dissipate wave energy during a recent storm event. Compared to a dense SAV meadow in shallower water, the suspended aquaculture farms more effectively attenuate random waves with a smaller peak period and the higher frequency components of wave spectrum. The performance of suspended aquaculture farms is less affected by water level changes due to tides, surge and sea level rise, while the wave attenuation performance of SAV decreases with increasing water level due to decreased wave motion near the sea bed. Incorporating suspended aquaculture farms offshore significantly enhance the coastal protection effectiveness of SAV-based living shorelines and extend the wave attenuation capacity over a wider wave period and water level range. The combination of suspended aquaculture farms and traditional living shorelines provides a more effective nature-based coastal defense strategy than the traditional living shorelines alone
    corecore