3,823 research outputs found

    Cost effective power amplifiers for pulsed NMR sensors

    Get PDF
    Sensors that measure magnetic resonance relaxation times are increasingly finding applications in areas such as food and drink authenticity and waste water treatment control. Modern permanent magnets are used to provide the static magnetic field in many commercial instruments and advances in electronics, such as field programmable gate arrays, have provided lower cost console electronics for generating and detecting the pulse sequence. One area that still remains prohibitively expensive for many sensor applications of pulsed NMR is the requirement for a high frequency power amplifier. With many permanent magnet sensors providing a magnetic field in the 0.25T to 0.5T range, a power amplifier that operates in the 10MHz to 20MHz rage is required. In this work we demonstrate that some low cost commercial amplifiers can be used, with minor modification, to operate as pulsed NMR power amplifiers. We demonstrate two amplifier systems, one medium power that can be constructed for less than Euro 100 and a second much high power system that produces comparable results to commercial pulse amplifiers that are an order of magnitude more expensive. Data is presented using both the commercial NMR MOUSE and a permanent magnet system used for monitoring the clog state of constructed wetlands

    King of the Hill

    Get PDF

    Developing an acoustic sensing yarn for health surveillance in a military setting

    Get PDF
    Overexposure to high levels of noise can cause permanent hearing disorders, which have a significant adverse effect on the quality of life of those affected. Injury due to noise can affect people in a variety of careers including construction workers, factory workers, and members of the armed forces. By monitoring the noise exposure of workers, overexposure can be avoided and suitable protective equipment can be provided. This work focused on the creation of a noise dosimeter suitable for use by members of the armed forces, where a discrete dosimeter was integrated into a textile helmet cover. In this way the sensing elements could be incorporated very close to the ears, providing a highly representative indication of the sound level entering the body, and also creating a device that would not interfere with military activities. This was achieved by utilising commercial microelectromechanical system microphones integrated within the fibres of yarn to create an acoustic sensing yarn. The acoustic sensing yarns were fully characterised over a range of relevant sound levels and frequencies at each stage in the yarn production process. The yarns were ultimately integrated into a knitted helmet cover to create a functional acoustic sensing helmet cover prototype

    A Low Cost Magnetic Resonance Relaxometry Sensor

    Get PDF
    Magnetic resonance relaxometry, conducted by measuring relaxation parameters at different field strengths, has become an increasingly popular technique in recent years. This technique, known as field cycling, often uses expensive and large electromagnets. In this work we present a small, portable field cycling sensor. Fast field cycling is a technique that uses a varying magnetic field applied to a sample, polarising it at a high field, allowing it time to develop at a lower field and then collecting the data at the same initial high field. This causes changes in T1 and can reveal interesting proper ties of the samples not seen by traditional methods. A prototype portable magnetic resonance sensor that undertakes relaxometry measurements using fast field cycling has been developed using a combination of permanent magnets which has been used to conduct preliminary studies on a water sample. We demonstrate the effectiveness of this sensor by conducting measurements of T1 at different field strengths

    The multi-modal Matrix: Common Semiotic Principles in the Seven Modes of Narrative Film

    Get PDF
    [Abstract] From this brief introduction to the Multi-modal Matrix, it is hoped that the potential richness, depth and complexity of compositional choices available to the film-maker has been communicated. Understanding how film is articulated, how it may be generated by applying the symbolic code, is seen as a means of empowerment for both the filmmaker and film viewer. The former may be empowered with a range of devices with which to generate more conceptually and perceptually intriguing statements in film language, which engage the viewer and prolong that engagement; the latter may be provided with a set of tools with which to negotiate the more perceptually-challenging meanings offered in the film text. Constructive comments and suggestions for co-operative developments are welcome

    Temperature dependence of magnetic resonance sensors for embedding into constructed wetlands

    Get PDF
    Constructed wetlands are an environmentally considerate means of water purification. Automating parameters such as heating and aeration may extend the lifetime of constructed wetlands and allow for superior waste-water treatment. One critical parameter to monitor in a wetland system is clogging of pores within the gravel matrix, as this limits the viable lifetime of the system. It has previously been observed in a laboratory setting that magnetic resonance (MR) relaxation measurements, T1 and T2eff, can be used to characterise the clogging state. Various open-geometry MR sensors have been constructed using permanent neodymium magnets with the view of long-term embedding as part of the EU FP7 project ARBI (Automated Reed Bed Installations). The ultimate aim is to monitor clogging levels over the lifetime of the reed bed using MR techniques. One issue with taking various MR measurements over such an extreme time scale, in this case years, is that temperature fluctuations will significantly alter the magnetic field strength produced by the sensors constituent magnets. While the RF transmit-receive circuit has been built so that MR can still be conducted at a range of frequencies without altering the tuning or matching of the circuit, this will result in poor RF excitation if the magnetic field strength shifts significantly. This work investigates the effect that temperature has on the a MR sensor intended for embedding, to determine whether received signal intensity is compromised significantly at large temperature changes

    A historical review of the development of electronic textiles

    Get PDF
    Textiles have been at the heart of human technological progress for thousands of years, with textile developments closely tied to key inventions that have shaped societies. The relatively recent invention of electronic textiles is set to push boundaries again and has already opened up the potential for garments relevant to defense, sports, medicine, and health monitoring. The aim of this review is to provide an overview of the key innovative pathways in the development of electronic textiles to date using sources available in the public domain regarding electronic textiles (E-textiles); this includes academic literature, commercialized products, and published patents. The literature shows that electronics can be integrated into textiles, where integration is achieved by either attaching the electronics onto the surface of a textile, electronics are added at the textile manufacturing stage, or electronics are incorporated at the yarn stage. Methods of integration can have an influence on the textiles properties such as the drapability of the textile

    Low-cost magnetic resonance sensors for process monitoring in the food industry<span></span>

    Get PDF
    Low-cost magnetic resonance (MR) sensors have in recent years been used to investigate a number of systems by measuring the relaxation times T1 and T2eff. These measured parameters vary in line with changes in many systems giving the investigator a useful non-invasive probe. While the use of MR for in-line or on-line process monitoring in the food industry is not a novel concept, much of the work conducted previously has involved acquiring spatially resolved data which requires a magnetic resonance imaging system. These are both expensive to purchase and maintain, occupy large amounts of space and present problems with safety. In this work we show the value that a very inexpensive magnet and coil geometry (<€200) can bring to process monitoring. A MR sensor utilising an eight-element Halbach cylinder with internal diameter of 10mm has been constructed giving a highly uniform magnetic field yielding a strong signal-to-noise ratio. It is shown to be useful for assessing the relaxation times of a range of relevant samples
    • …
    corecore