28,871 research outputs found
Daylight quantum key distribution over 1.6 km
Quantum key distribution (QKD) has been demonstrated over a point-to-point
-km atmospheric optical path in full daylight. This record
transmission distance brings QKD a step closer to surface-to-satellite and
other long-distance applications.Comment: 4 pages, 2 figures, 1 table. Submitted to PRL on 14 January 2000 for
publication consideratio
Universal fluctuations in the support of the random walk
A random walk starts from the origin of a d-dimensional lattice. The
occupation number n(x,t) equals unity if after t steps site x has been visited
by the walk, and zero otherwise. We study translationally invariant sums M(t)
of observables defined locally on the field of occupation numbers. Examples are
the number S(t) of visited sites; the area E(t) of the (appropriately defined)
surface of the set of visited sites; and, in dimension d=3, the Euler index of
this surface. In d > 3, the averages (t) all increase linearly with t as
t-->infinity. We show that in d=3, to leading order in an asymptotic expansion
in t, the deviations from average Delta M(t)= M(t)-(t) are, up to a
normalization, all identical to a single "universal" random variable. This
result resembles an earlier one in dimension d=2; we show that this
universality breaks down for d>3.Comment: 17 pages, LaTeX, 2 figures include
Variational Two Fermion Wave Equations in QED: Muonium Like Systems
We consider a reformulation of QED in which covariant Green functions are
used to solve for the electromagnetic field in terms of the fermion fields. The
resulting modified Hamiltonian contains the photon propagator directly. A
simple Fock-state variational trial function is used to derive relativistic
two-fermion equations variationally from the expectation value of the
Hamiltonian of the field theory. The interaction kernel of the equation is
shown to be, in essence, the invariant M-matrix in lowest order. Solutions of
the two-body equations are presented for muonium like system for small coupling
strengths. The results compare well with the observed muonium spectrum, as well
as that for hydrogen and muonic hydrogen. Anomalous magnetic moment effects are
discussed
Practical free-space quantum key distribution over 1 km
A working free-space quantum key distribution (QKD) system has been developed
and tested over an outdoor optical path of ~1 km at Los Alamos National
Laboratory under nighttime conditions. Results show that QKD can provide secure
real-time key distribution between parties who have a need to communicate
secretly. Finally, we examine the feasibility of surface to satellite QKD.Comment: 5 pages, 2 figures, 2 tables. Submitted to Physics Review Letters,
May 199
Scaling in Plasticity-Induced Cell-Boundary Microstructure: Fragmentation and Rotational Diffusion
We develop a simple computational model for cell boundary evolution in
plastic deformation. We study the cell boundary size distribution and cell
boundary misorientation distribution that experimentally have been found to
have scaling forms that are largely material independent. The cell division
acts as a source term in the misorientation distribution which significantly
alters the scaling form, giving it a linear slope at small misorientation
angles as observed in the experiments. We compare the results of our simulation
to two closely related exactly solvable models which exhibit scaling behavior
at late times: (i) fragmentation theory and (ii) a random walk in rotation
space with a source term. We find that the scaling exponents in our simulation
agree with those of the theories, and that the scaling collapses obey the same
equations, but that the shape of the scaling functions depend upon the methods
used to measure sizes and to weight averages and histograms
Cm-Wavelength Total Flux and Linear Polarization Properties of Radio-Loud BL Lacertae Objects
Results from a long-term program to quantify the range of behavior of the
cm-wavelength total flux and linear polarization variability properties of a
sample of 41 radio-loud BL Lac objects using weekly to tri-monthly observations
with the University of Michigan 26-m telescope operating at 14.5, 8.0, and 4.8
GHz are presented; these observations are used to identify class-dependent
differences between these BL Lacs and QSOs in the Pearson-Readhead sample. The
BL Lacs are found to be more highly variable in total flux density than the
QSOs, exhibiting changes that are often nearly-simultaneous and of comparable
amplitude at 14.5 and 4.8 GHz in contrast to the behavior in the QSOs and
supporting the existence of class-dependent differences in opacity within the
parsec-scale jet flows. Structure function analyses of the flux observations
quantify that a characteristic timescale is identifiable in only 1/3 of the BL
Lacs. The time-averaged fractional linear polarizations are only on the order
of a few percent and are consistent with the presence of tangled magnetic
fields within the emitting regions. In many sources a preferred long-term
orientation of the EVPA is present; when compared with the VLBI structural
axis, no preferred position angle difference is identified. The polarized flux
typically exhibits variability with timescales of months to a few years and
shows the signature of a propagating shock during several resolved outbursts.
The observations indicate that the source emission is predominately due to
evolving source components and support the occurrence of more frequent shock
formation in BL Lac parsec-scale flows than in QSO jets. The differences in
variability behavior and polarization between BL Lacs and QSOs can be explained
by differences in jet stability.Comment: 1 LaTex (aastex) file, 21 postscript figure files, 2 external LaTex
table files. To appear in the Astrophysical Journa
Nearly horizon skimming orbits of Kerr black holes
An unusual set of orbits about extreme Kerr black holes resides at the
Boyer-Lindquist radius , the coordinate of the hole's event horizon.
These ``horizon skimming'' orbits have the property that their angular momentum
{\it increases} with inclination angle, opposite to the familiar behavior
one encounters at larger radius. In this paper, I show that this behavior is
characteristic of a larger family of orbits, the ``nearly horizon skimming''
(NHS) orbits. NHS orbits exist in the very strong field of any black hole with
spin a\agt 0.952412M. Their unusual behavior is due to the locking of
particle motion near the event horizon to the hole's spin, and is therefore a
signature of the Kerr metric's extreme strong field. An observational hallmark
of NHS orbits is that a small body spiraling into a Kerr black hole due to
gravitational-wave emission will be driven into orbits of progressively smaller
inclination angle, toward the equator. This is in contrast to the ``normal''
behavior. For circular orbits, the change in inclination is very small, and
unlikely to be of observational importance. I argue that the change in
inclination may be considerably larger when one considers the evolution of
inclined eccentric orbits. If this proves correct, then the gravitational waves
produced by evolution through the NHS regime may constitute a very interesting
and important probe of the strong-field nature of rotating black holes.Comment: 9 pages, 5 figures, accepted for publication in PR
Rate of convergence of linear functions on the unitary group
We study the rate of convergence to a normal random variable of the real and
imaginary parts of Tr(AU), where U is an N x N random unitary matrix and A is a
deterministic complex matrix. We show that the rate of convergence is O(N^{-2 +
b}), with 0 <= b < 1, depending only on the asymptotic behaviour of the
singular values of A; for example, if the singular values are non-degenerate,
different from zero and O(1) as N -> infinity, then b=0. The proof uses a
Berry-Esse'en inequality for linear combinations of eigenvalues of random
unitary, matrices, and so appropriate for strongly dependent random variables.Comment: 34 pages, 1 figure; corrected typos, added remark 3.3, added 3
reference
Consequences of gravitational radiation recoil
Coalescing binary black holes experience an impulsive kick due to anisotropic
emission of gravitational waves. We discuss the dynamical consequences of the
recoil accompanying massive black hole mergers. Recoil velocities are
sufficient to eject most coalescing black holes from dwarf galaxies and
globular clusters, which may explain the apparent absence of massive black
holes in these systems. Ejection from giant elliptical galaxies would be rare,
but coalescing black holes are displaced from the center and fall back on a
time scale of order the half-mass crossing time. Displacement of the black
holes transfers energy to the stars in the nucleus and can convert a steep
density cusp into a core. Radiation recoil calls into question models that grow
supermassive black holes from hierarchical mergers of stellar-mass precursors.Comment: 5 pages, 4 figures, emulateapj style; minor changes made; accepted to
ApJ Letter
- âŠ