2,842 research outputs found

    Strong-field tidal distortions of rotating black holes: III. Embeddings in hyperbolic 3-space

    Full text link
    In previous work, we developed tools for quantifying the tidal distortion of a black hole's event horizon due to an orbiting companion. These tools use techniques which require large mass ratios (companion mass μ\mu much smaller than black hole mass MM), but can be used for arbitrary bound orbits, and for any black hole spin. We also showed how to visualize these distorted black holes by embedding their horizons in a global Euclidean 3-space, E3{\mathbb{E}}^3. Such visualizations illustrate interesting and important information about horizon dynamics. Unfortunately, we could not visualize black holes with spin parameter a∗>3/2≈0.866a_* > \sqrt{3}/2 \approx 0.866: such holes cannot be globally embedded into E3{\mathbb{E}}^3. In this paper, we overcome this difficulty by showing how to embed the horizons of tidally distorted Kerr black holes in a hyperbolic 3-space, H3{\mathbb{H}}^3. We use black hole perturbation theory to compute the Gaussian curvatures of tidally distorted event horizons, from which we build a two-dimensional metric of their distorted horizons. We develop a numerical method for embedding the tidally distorted horizons in H3{\mathbb{H}}^3. As an application, we give a sequence of embeddings into H3{\mathbb{H}}^3 of a tidally interacting black hole with spin a∗=0.9999a_*=0.9999. A small amplitude, high frequency oscillation seen in previous work shows up particularly clearly in these embeddings.Comment: 10 pages, 6 figure

    Dynamics of face and annular seals with two-phase flow

    Get PDF
    A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. Some of the distinctive behavior characteristics of two phase seals are discussed, particularly their axial stability. The main conclusions are that seals with two phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction: calculations of stiffness coefficients, temperature and pressure distributions, and leakage rates for parallel and coned face seals. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two phase flow is described and documented. The analyses, results, and computer codes are summarized

    Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics

    Get PDF
    We describe a powerful and intuitive technique for modeling light-matter interactions in classical and quantum nanoplasmonics. Our approach uses a quasinormal mode expansion of the Green function within a metal nanoresonator of arbitrary shape, together with a Dyson equation, to derive an expression for the spontaneous decay rate and far field propagator from dipole oscillators outside resonators. For a single quasinormal mode, at field positions outside the quasi-static coupling regime, we give a closed form solution for the Purcell factor and generalized effective mode volume. We augment this with an analytic expression for the divergent LDOS very near the metal surface, which allows us to derive a simple and highly accurate expression for the electric field outside the metal resonator at distances from a few nanometers to infinity. This intuitive formalism provides an enormous simplification over full numerical calculations and fixes several pending problems in quasinormal mode theory

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    Get PDF
    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future

    Lower limb orthopaedic surgery results in changes to coagulation and non-specific inflammatory biomarkers, including selective clinical outcome measures

    Get PDF
    Gold OABackground: With an aging society and raised expectations, joint replacement surgery is likely to increase significantly in the future. The development of postoperative complications following joint replacement surgery (for example, infection, systemic inflammatory response syndrome and deep vein thrombosis) is also likely to increase. Despite considerable progress in orthopaedic surgery, comparing a range of biological markers with the ultimate aim of monitoring or predicting postoperative complications has not yet been extensively researched. The aim of this clinical pilot study was to test the hypothesis that lower limb orthopaedic surgery results in changes to coagulation, non-specific markers of inflammation (primary objective) and selective clinical outcome measures (secondary objective). Methods Test subjects were scheduled for elective total hip replacement (THR) or total knee replacement (TKR) orthopaedic surgery due to osteoarthritis (n = 10). Platelet counts and D-dimer concentrations were measured to assess any changes to coagulation function. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were measured as markers of non-specific inflammation. Patients were monitored regularly to assess for any signs of postoperative complications, including blood transfusions, oedema (knee swelling), wound infection, pain and fever. Results THR and TKR orthopaedic surgery resulted in similar changes of coagulation and non-specific inflammatory biomarkers, suggestive of increased coagulation and inflammatory reactions postoperatively. Specifically, THR and TKR surgery resulted in an increase in platelet (P = 0.013, THR) and D-dimer (P = 0.009, TKR) concentrations. Evidence of increased inflammation was demonstrated by an increase in CRP and ESR (P ≤ 0.05, THR and TKR). Four patients received blood transfusions (two THR and two TKR patients), with maximal oedema, pain and aural temperatures peaking between days 1 and 3 postoperatively, for both THR and TKR surgery. None of the patients developed postoperative infections. Conclusions The most noticeable changes in biological markers occur during days 1 to 3 postoperatively for both THR and TKR surgery, and these may have an effect on such postoperative clinical outcomes as oedema, pyrexia and pain. This study may assist in understanding the postoperative course following lower limb orthopaedic surgery, and may help clinicians in planning postoperative management and patient care

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    Get PDF
    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the Aerocover configuration. Both the Aerocovers and the TPS were populated with high contrast targets so that photogrammetric solutions of the loaded surface could be created. These solutions both refined the aerodynamic shape for CFD modeling and provided a deformed shape to validate structural Finite Element Analysis (FEA) models. Extensive aerothermal testing has been performed on the TPS candidates. This testing has been conducted in several facilities across the country. The majority of the testing has been conducted in the Boeing Large Core Arc Tunnel (LCAT). HIAD is continuing to mature testing methodology in this facility and is developing new test sample fixtures and control methodologies to improve understanding and quality of the environments to which the samples are subjected. Additional testing has been and continues to be performed in the NASA LaRC 8ft High Temperature Tunnel, where samples up to 2ft by 2ft are being tested over representative underlying structures incorporating construction features such as sewn seams and through-thickness quilting. With the successful completion to the IRVE-3 flight demonstration, mission planning efforts are ramping up on the development of the HIAD Earth Atmospheric Reenty Test (HEART) which will demonstrate a relevant scale vehicle in relevant environments via a large-scale aeroshell (approximately 8.5m) entering at orbital velocity (approximately 7km/sec) with an entry mass on the order of 4MT. Also, the Build to Print (BTP) hardware built as a risk mitigation for the IRVE-3 project to have a "spare" ready to go in the event of a launch vehicle delivery failure is now available for an additional sub-orbital flight experiment. Mission planning is underway to define a mission that can utilize this existing hardware and help the HIAD project further mature this technology

    Impact of Vehicle Flexibility on IRVE-II Flight Dynamics

    Get PDF
    The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described

    Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    Get PDF
    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities

    Total hip and knee replacement surgery results in changes in leukocyte and endothelial markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is estimated that over 8 million people in the United Kingdom suffer from osteoarthritis. These patients may require orthopaedic surgical intervention to help alleviate their clinical condition. Investigations presented here was to test the hypothesis that total hip replacement (THR) and total knee replacement (TKR) orthopaedic surgery result in changes to leukocyte and endothelial markers thus increasing inflammatory reactions postoperatively.</p> <p>Methods</p> <p>During this 'pilot study', ten test subjects were all scheduled for THR or TKR elective surgery due to osteoarthritis. Leukocyte concentrations were measured using an automated full blood count analyser. Leukocyte CD11b (Mac-1) and CD62L cell surface expression, intracellular production of H<sub>2</sub>O<sub>2 </sub>and elastase were measured as markers of leukocyte function. Von Willebrand factor (vWF) and soluble intercellular adhesion molecule-1 (sICAM-1) were measured as markers of endothelial activation.</p> <p>Results</p> <p>The results obtained during this study demonstrate that THR and TKR orthopaedic surgery result in similar changes of leukocyte and endothelial markers, suggestive of increased inflammatory reactions postoperatively. Specifically, THR and TKR surgery resulted in a leukocytosis, this being demonstrated by an increase in the total leukocyte concentration following surgery. Evidence of leukocyte activation was demonstrated by a decrease in CD62L expression and an increase in CD11b expression by neutrophils and monocytes respectively. An increase in the intracellular H<sub>2</sub>O<sub>2 </sub>production by neutrophils and monocytes and in the leukocyte elastase concentrations was also evident of leukocyte activation following orthopaedic surgery. With respect to endothelial activation, increases in vWF and sICAM-1 concentrations were demonstrated following surgery.</p> <p>Conclusion</p> <p>In general it appeared that most of the leukocyte and endothelial markers measured during these studies peaked between days 1-3 postoperatively. It is proposed that by allowing orthopaedic surgeons access to alternative laboratory markers such as CD11b, H<sub>2</sub>O<sub>2 </sub>and elastase, CD62L, vWF and sICAM-1, an accurate assessment of the extent of inflammation due to surgery <it>per se </it>could be made. Ultimately, the leukocyte and endothelial markers assessed during this investigation may have a role in monitoring potential infectious complications that can occur during the postoperative period.</p
    • …
    corecore