40,719 research outputs found

    Midlatitude Pi2 pulsations: AFGL and ISEE magnetometer observations correlated

    Get PDF
    The ISEE observations of the pi2 magnetic pulsations occuring substorm onset in the inner magnetosphere are discussed. One of these events which was also detected as a pi2 event by the AFGL midlatitude magnetometers is considered. The event occurred when the foot of the ISEE field line was over North America. The ground and satellite signals are remarkably similar: they start and stop at the same time, have the same period and can be correlated cycle by cycle. The waves are detected in the electric field data from ISEE 1 and in the magnetic field data from both ISEE 1 and ISEE 2. Calculation of the Poynting vector at ISEE 1 shows that the energy flowed mainly westward, but that there was also a component towards the nearer (southern) ionospheric foot of the field line. The phases between the various field components measured by ISEE 1 and 2 indicate that this is a standing hydromagnetic oscillation

    Localizing coalescing massive black hole binaries with gravitational waves

    Full text link
    Massive black hole binary coalescences are prime targets for space-based gravitational wave (GW) observatories such as {\it LISA}. GW measurements can localize the position of a coalescing binary on the sky to an ellipse with a major axis of a few tens of arcminutes to a few degrees, depending on source redshift, and a minor axis which is 2−42 - 4 times smaller. Neglecting weak gravitational lensing, the GWs would also determine the source's luminosity distance to better than percent accuracy for close sources, degrading to several percent for more distant sources. Weak lensing cannot, in fact, be neglected and is expected to limit the accuracy with which distances can be fixed to errors no less than a few percent. Assuming a well-measured cosmology, the source's redshift could be inferred with similar accuracy. GWs alone can thus pinpoint a binary to a three-dimensional ``pixel'' which can help guide searches for the hosts of these events. We examine the time evolution of this pixel, studying it at merger and at several intervals before merger. One day before merger, the major axis of the error ellipse is typically larger than its final value by a factor of ∼1.5−6\sim 1.5-6. The minor axis is larger by a factor of ∼2−9\sim 2-9, and, neglecting lensing, the error in the luminosity distance is larger by a factor of ∼1.5−7\sim 1.5-7. This large change over a short period of time is due to spin-induced precession, which is strongest in the final days before merger. The evolution is slower as we go back further in time. For z=1z = 1, we find that GWs will localize a coalescing binary to within $\sim 10\ \mathrm{deg}^2$ as early as a month prior to merger and determine distance (and hence redshift) to several percent.Comment: 30 pages, 10 figures, 5 tables. Version published in Ap

    Role of coronal mass ejections in the heliospheric Hale cycle

    Get PDF
    [1] The 11-year solar cycle variation in the heliospheric magnetic field strength can be explained by the temporary buildup of closed flux released by coronal mass ejections (CMEs). If this explanation is correct, and the total open magnetic flux is conserved, then the interplanetary-CME closed flux must eventually open via reconnection with open flux close to the Sun. In this case each CME will move the reconnected open flux by at least the CME footpoint separation distance. Since the polarity of CME footpoints tends to follow a pattern similar to the Hale cycle of sunspot polarity, repeated CME eruption and subsequent reconnection will naturally result in latitudinal transport of open solar flux. We demonstrate how this process can reverse the coronal and heliospheric fields, and we calculate that the amount of flux involved is sufficient to accomplish the reversal within the 11 years of the solar cycle

    Building a CCD Spectrograph for Educational or Amateur Astronomy

    Full text link
    We discuss the design of an inexpensive, high-throughput CCD spectrograph for a small telescope. By using optical fibers to carry the light from the telescope focus to a table-top spectrograph, one can minimize the weight carried by the telescope and simplify the spectrograph design. We recently employed this approach in the construction of IntroSpec, an instrument built for the 16-inch Knowles Telescope on the Harvard College campus.Comment: 17 pages including 7 figures, PASP, accepted (higher resolution figures at http://cfa-www.harvard.edu/~sheila/introspec.ps.gz

    Spin-polarized tunneling spectroscopic studies of the intrinsic heterogeneity and pseudogap phenomena in colossal magnetoresistive manganite La_{0.7}Ca_{0.3}MnO_{3}

    Get PDF
    Spatially resolved tunneling spectroscopic studies of colossal magnetoresistive (CMR) manganite La0.7Ca0.3MnO3\rm La_{0.7}Ca_{0.3}MnO_3 (LCMO) epitaxial films on (LaAlO3)0.3(Sr2AlTaO6)0.7\rm (LaAlO_3)_{0.3}(Sr_2AlTaO_6)_{0.7} substrate are investigated as functions of temperature, magnetic field and spin polarization by means of scanning tunneling spectroscopy. Systematic surveys of the tunneling spectra taken with Pt/Ir tips reveal spatial variations on the length scale of a few hundred nanometers in the ferromagnetic state, which may be attributed to the intrinsic heterogeneity of the manganites due to their tendency towards phase separation. The electronic heterogeneity is found to decrease either with increasing field at low temperatures or at temperatures above all magnetic ordering temperatures. On the other hand, spectra taken with Cr-coated tips are consistent with convoluted electronic properties of both LCMO and Cr. In particular, for temperatures below the magnetic ordering temperatures of both Cr and LCMO, the magnetic-field dependent tunneling spectra may be quantitatively explained by the scenario of spin-polarized tunneling in a spin-valve configuration. Moreover, a low-energy insulating energy gap ∼0.6\sim 0.6 eV commonly found in the tunneling conductance spectra of bulk metallic LCMO at T→0T \to 0 may be attributed to a surface ferromagnetic insulating (FI) phase, as evidenced by its spin filtering effect at low temperatures and vanishing gap value above the Curie temperature. Additionally, temperature independent pseudogap (PG) phenomena existing primarily along the boundaries of magnetic domains are observed in the zero-field tunneling spectra. The PG becomes strongly suppressed by applied magnetic fields at low temperatures when the tunneling spectra of LCMO become highly homogeneous. These findings suggest that the occurrence PG is associated with the electronic heterogeneity of the manganites.Comment: 15 pages, 15 figures. Published in Physical Review B. Corresponding author: Nai-Chang Yeh (E-mail: [email protected]
    • …
    corecore