508 research outputs found

    Press Release - Senator Edmund S. Muskie Disputes a Story of Deadlock on Drug Abuse Legislation

    Get PDF
    Senators Javits, Percy, Gurney, Ribicoff, Hughes, and Muskie issued a statement disputing a New York Times news report which asserted that a deadlock existed between the Congress and the White House over pending drug abuse control legislation

    Genetic structure of First Nation communities in the Pacific Northwest

    Get PDF
    This study presents genetic data for nine Native American populations from northern North America. Analyses of genetic variation focus on the Pacific Northwest (PNW). Using mitochondrial, Y chromosomal and autosomal DNA variants, we aim to more closely address the relationships of geography and language with present genetic diversity among the regional PNW Native American populations. Patterns of genetic diversity exhibited by the three genetic systems were consistent with our hypotheses, in that we expected genetic variation to be more strongly explained by geographic proximity than linguistic structure. Our findings were corroborated through a variety on analytic approaches, with the unrooted trees for the three genetic systems consistently separating inland from coastal PNW populations. Furthermore, the AMOVA tests support the trends exhibited by the unrooted trees, with geographic partitioning of PNW populations (FCT = 19.43%, p = 0.010 ± 0.009) accounting for over twice as much of the observed genetic variation compared with linguistic partitioning of the same populations (FCT = 9.15%, p = 0.193 ± 0.013). These findings demonstrate a consensus with previous PNW population studies examining the relationships of genome-wide variation, mitochondrial haplogroup frequencies, and skeletal morphology with geography and language

    Evaluating the effectiveness of agricultural adaptation to climate change in preindustrial society

    Get PDF
    The effectiveness of agricultural adaptation determines the vulnerability of this sector to climate change, particularly during the preindustrial era. However, this effectiveness has rarely been quantitatively evaluated, specifically at a large spatial and long-term scale. The present study covers this case of preindustrial society in AD 1500–1800. Given the absence of technological innovations in this time frame, agricultural production was chiefly augmented by cultivating more land (land input) and increasing labor input per land unit (labor input). Accordingly, these two methods are quantitatively examined. Statistical results show that within the study scale, land input is a more effective approach of mitigating climatic impact than labor input. Nonetheless, these observations collectively improve Boserup's theory from the perspective of a large spatial and long-term scale.postprin

    20 years of research on the Alcator C-Mod tokamak

    Get PDF
    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99ER54512)United States. Dept. of Energy (Cooperative Agreement DE-FG03-94ER-54241)United States. Dept. of Energy (Cooperative Agreement DE-AC02-78ET- 51013)United States. Dept. of Energy (Cooperative Agreement DE-AC02-09CH11466)United States. Dept. of Energy (Cooperative Agreement DE-FG02-95ER54309)United States. Dept. of Energy (Cooperative Agreement DE-AC02-05CH11231)United States. Dept. of Energy (Cooperative Agreement DE-AC52-07NA27344)United States. Dept. of Energy (Cooperative Agreement DE-FG02- 97ER54392)United States. Dept. of Energy (Cooperative Agreement DE-SC00-02060

    Teixobactin kills bacteria by a two-pronged attack on the cell envelope

    Get PDF
    Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1–3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates

    Alcator C-Mod: research in support of ITER and steps beyond

    Get PDF
    This paper presents an overview of recent highlights from research on Alcator C-Mod. Significant progress has been made across all research areas over the last two years, with particular emphasis on divertor physics and power handling, plasma–material interaction studies, edge localized mode-suppressed pedestal dynamics, core transport and turbulence, and RF heating and current drive utilizing ion cyclotron and lower hybrid tools. Specific results of particular relevance to ITER include: inner wall SOL transport studies that have led, together with results from other experiments, to the change of the detailed shape of the inner wall in ITER; runaway electron studies showing that the critical electric field required for runaway generation is much higher than predicted from collisional theory; core tungsten impurity transport studies reveal that tungsten accumulation is naturally avoided in typical C-Mod conditions.United States. Department of Energy (DE-FC02-99ER54512-CMOD)United States. Department of Energy (DE-AC02-09CH11466)United States. Department of Energy (DE-FG02-96ER-54373)United States. Department of Energy (DE-FG02-94ER54235

    Attending to a misoriented word causes the eyeball to rotate in the head

    Full text link
    Torsional eye movements are triggered by head tilt and a rotating visual field. We examined whether attention to a misoriented form could also induce torsion. 36 observers viewed an adapting field containing a bright vertical line, followed by a display composed of two misoriented words (one rotated clockwise, the other counterclockwise, 15, 30 or 45 degrees). Subjects were instructed to attend to one of the words. Their adjustments of a reference line to match the tilt of the afterimage showed that attending to a misoriented word produced a torsional eye movement (verified with direct measurements on four additional individuals). The eye movement reduced the retinal misorientation of the word by about 1 degree. The results reinforce the linkage between selective attention and eye movements, and may provide a useful tool in dissecting different forms of “mental rotation” and other adjustments in internal reference frames

    Microbial Prevalence, Diversity and Abundance in Amniotic Fluid During Preterm Labor: A Molecular and Culture-Based Investigation

    Get PDF
    BACKGROUND: Preterm delivery causes substantial neonatal mortality and morbidity. Unrecognized intra-amniotic infections caused by cultivation-resistant microbes may play a role. Molecular methods can detect, characterize and quantify microbes independently of traditional culture techniques. However, molecular studies that define the diversity and abundance of microbes invading the amniotic cavity, and evaluate their clinical significance within a causal framework, are lacking. METHODS AND FINDINGS: In parallel with culture, we used broad-range end-point and real-time PCR assays to amplify, identify and quantify ribosomal DNA (rDNA) of bacteria, fungi and archaea from amniotic fluid of 166 women in preterm labor with intact membranes. We sequenced up to 24 rRNA clones per positive specimen and assigned taxonomic designations to approximately the species level. Microbial prevalence, diversity and abundance were correlated with host inflammation and with gestational and neonatal outcomes. Study subjects who delivered at term served as controls. The combined use of molecular and culture methods revealed a greater prevalence (15% of subjects) and diversity (18 taxa) of microbes in amniotic fluid than did culture alone (9.6% of subjects; 11 taxa). The taxa detected only by PCR included a related group of fastidious bacteria, comprised of Sneathia sanguinegens, Leptotrichia amnionii and an unassigned, uncultivated, and previously-uncharacterized bacterium; one or more members of this group were detected in 25% of positive specimens. A positive PCR was associated with histologic chorioamnionitis (adjusted odds ratio [OR] 20; 95% CI, 2.4 to 172), and funisitis (adjusted OR 18; 95% CI, 3.1 to 99). The positive predictive value of PCR for preterm delivery was 100 percent. A temporal association between a positive PCR and delivery was supported by a shortened amniocentesis-to-delivery interval (adjusted hazard ratio 4.6; 95% CI, 2.2 to 9.5). A dose-response association was demonstrated between bacterial rDNA abundance and gestational age at delivery (r(2) = 0.42; P<0.002). CONCLUSIONS: The amniotic cavity of women in preterm labor harbors DNA from a greater diversity of microbes than previously suspected, including as-yet uncultivated, previously-uncharacterized taxa. The strength, temporality and gradient with which these microbial sequence types are associated with preterm delivery support a causal relationship

    International Factors and the 1964 Election

    Get PDF
    International issues are not usually seen as having been significant to the 1964 general election result. Harold Wilson made only limited references to foreign policy and defence during the campaign, while opinion polls showed that voters saw domestic questions as being far more important. Traditionally, international issues have had only a limited impact upon British general elections. But the 1964 election was one of the most closely run in history and this article argues that, interpreted broadly, international questions did have a real effect on the contest. The sitting prime minister Sir Alec Douglas-Home focused on the future of the nuclear deterrent for much of the campaign, while considerations about the country's relative decline in the world, reflected in chronic balance of payment problems, helped Labour's case that it was ‘time for a change’ at the top. Besides, the mid-1960s was a significant point for the country's global position: the post-war policy of ‘three circles’—in which Britain played a major role in Europe, maintained a global empire and influenced US policy via the ‘special relationship’—was being called into question. The question deserves to be asked, therefore, why there was not a more intense debate between the political leaders about Britain's international role
    corecore