1,457 research outputs found

    Racing Multi-Objective Selection Probabilities

    Get PDF
    In the context of Noisy Multi-Objective Optimization, dealing with uncertainties requires the decision maker to define some preferences about how to handle them, through some statistics (e.g., mean, median) to be used to evaluate the qualities of the solutions, and define the corresponding Pareto set. Approximating these statistics requires repeated samplings of the population, drastically increasing the overall computational cost. To tackle this issue, this paper proposes to directly estimate the probability of each individual to be selected, using some Hoeffding races to dynamically assign the estimation budget during the selection step. The proposed racing approach is validated against static budget approaches with NSGA-II on noisy versions of the ZDT benchmark functions

    The Supernova Relic Neutrino Background

    Full text link
    An upper bound to the supernova relic neutrino background from all past Type II supernovae is obtained using observations of the Universal metal enrichment history. We show that an unambiguous detection of these relic neutrinos by the Super-Kamiokande detector is unlikely. We also analyze the event rate in the Sudbury Neutrino Observatory (where coincident neutrons from anti-nu_e + D --> n + n + e+ might enhance background rejection), and arrive at the same conclusion. If the relic neutrino flux should be observed to exceed our upper bound and if the observations of the metal enrichment history (for z<1) are not in considerable error, then either the Type II supernova rate does not track the metal enrichment history or some mechanism may be responsible for transforming anti-nu_{mu,tau} --> anti-nu_e.Comment: Matches version accepted for publication in Phys. Rev.

    The angular distribution of the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n

    Get PDF
    The reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n is very important for low-energy (Eν60E_\nu \lesssim 60 MeV) antineutrino experiments. In this paper we calculate the positron angular distribution, which at low energies is slightly backward. We show that weak magnetism and recoil corrections have a large effect on the angular distribution, making it isotropic at about 15 MeV and slightly forward at higher energies. We also show that the behavior of the cross section and the angular distribution can be well-understood analytically for Eν60E_\nu \lesssim 60 MeV by calculating to O(1/M){\cal O}(1/M), where MM is the nucleon mass. The correct angular distribution is useful for separating νˉe+pe++n\bar{\nu}_e + p \to e^+ + n events from other reactions and detector backgrounds, as well as for possible localization of the source (e.g., a supernova) direction. We comment on how similar corrections appear for the lepton angular distributions in the deuteron breakup reactions νˉe+de++n+n\bar{\nu}_e + d \to e^+ + n + n and νe+de+p+p\nu_e + d \to e^- + p + p. Finally, in the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n, the angular distribution of the outgoing neutrons is strongly forward-peaked, leading to a measurable separation in positron and neutron detection points, also potentially useful for rejecting backgrounds or locating the source direction.Comment: 10 pages, including 5 figure

    Verbal working memory and functional large-scale networks in schizophrenia

    Get PDF
    The aim of this study was to test whether bilinear and nonlinear effective connectivity (EC) measures of working memory fMRI data can differentiate between patients with schizophrenia (SZ) and healthy controls (HC). We applied bilinear and nonlinear Dynamic Causal Modeling (DCM) for the analysis of verbal working memory in 16 SZ and 21 HC. The connection strengths with nonlinear modulation between the dorsolateral prefrontal cortex (DLPFC) and the ventral tegmental area/substantia nigra (VTA/SN) were evaluated. We used Bayesian Model Selection at the group and family levels to compare the optimal bilinear and nonlinear models. Bayesian Model Averaging was used to assess the connection strengths with nonlinear modulation. The DCM analyses revealed that SZ and HC used different bilinear networks despite comparable behavioral performance. In addition, the connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area showed differences between SZ and HC. The adoption of different functional networks in SZ and HC indicated neurobiological alterations underlying working memory performance, including different connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area. These novel findings may increase our understanding of connectivity in working memory in schizophrenia

    Anomalous diffusion with absorption: Exact time-dependent solutions

    Full text link
    Recently, analytical solutions of a nonlinear Fokker-Planck equation describing anomalous diffusion with an external linear force were found using a non extensive thermostatistical Ansatz. We have extended these solutions to the case when an homogeneous absorption process is also present. Some peculiar aspects of the interrelation between the deterministic force, the nonlinear diffusion and the absorption process are discussed.Comment: RevTex, 16 pgs, 4 figures. Accepted in Physical Review

    Nucleon Charge and Magnetization Densities from Sachs Form Factors

    Full text link
    Relativistic prescriptions relating Sachs form factors to nucleon charge and magnetization densities are used to fit recent data for both the proton and the neutron. The analysis uses expansions in complete radial bases to minimize model dependence and to estimate the uncertainties in radial densities due to limitation of the range of momentum transfer. We find that the charge distribution for the proton is significantly broad than its magnetization density and that the magnetization density is slightly broader for the neutron than the proton. The neutron charge form factor is consistent with the Galster parametrization over the available range of Q^2, but relativistic inversion produces a softer radial density. Discrete ambiguities in the inversion method are analyzed in detail. The method of Mitra and Kumari ensures compatibility with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have been added and several discussions have been clarified with no significant changes to the conclusions. Now contains 47 pages including 21 figures and 2 table

    The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant

    Full text link
    We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the resultant data cube, we have been able to reconstruct the full 3D structure of the system of [O III] filaments. The majority of the ejecta form a ring of ~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We conclude that SNR N132D is approaching the end of the reverse shock phase before entering the fully thermalized Sedov phase of evolution. We speculate that the ring of oxygen-rich material comes from ejecta in the equatorial plane of a bipolar explosion, and that the overall shape of the SNR is strongly influenced by the pre-supernova mass loss from the progenitor star. We find tantalizing evidence of a polar jet associated with a very fast oxygen-rich knot, and clear evidence that the central star has interacted with one or more dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8 figure

    Linear and Second-order Optical Response of the III-V Mono-layer Superlattices

    Full text link
    We report the first fully self-consistent calculations of the nonlinear optical properties of superlattices. The materials investigated are mono-layer superlattices with GaP grown on the the top of InP, AlP and GaAs (110) substrates. We use the full-potential linearized augmented plane wave method within the generalized gradient approximation to obtain the frequency dependent dielectric tensor and the second-harmonic-generation susceptibility. The effect of lattice relaxations on the linear optical properties are studied. Our calculations show that the major anisotropy in the optical properties is the result of strain in GaP. This anisotropy is maximum for the superlattice with maximum lattice mismatch between the constituent materials. In order to differentiate the superlattice features from the bulk-like transitions an improvement over the existing effective medium model is proposed. The superlattice features are found to be more pronounced for the second-order than the linear optical response indicating the need for full supercell calculations in determining the correct second-order response.Comment: 9 pages, 4 figures, submitted to Phy. Rev.

    Study of KS KL Coupled Decays and KL -Be Interactions with the CMD-2 Detector at VEPP-2M Collider

    Full text link
    The integrated luminosity about 4000 inverse nanobarn of around phi meson mass ( 5 millions of phi mesons) has been collected with the CMD-2 detector at the VEPP-2M collider. A latest analysis of the KS KL coupled decays based on 30 % of available data is presented in this paper. The KS KL pairs from phi meson decays were reconstructed in the drift chamber when both kaons decayed into two charged particles. From a sample of 1423 coupled decays a selection of candidates to the CP violating KL into pi+ pi- decay was performed. CP violating decays were not identified because of the domination of events with a KL regenerating at the Be beam pipe into KS and a background from KL semileptonic decays. The regeneration cross section of 110 MeV/c KL mesons was found to be 53 +- 17 mb in agreement with theoretical expectations. The angular distribution of KS mesons after regeneration and the total cross section of KL for Be have been measured.Comment: 14 pages, 8 figure
    corecore