68 research outputs found

    Correction: A novel copro-diagnostic molecular method for qualitative detection and identification of parasitic nematodes in amphibians and reptiles (PLoS ONE (2017) 12: 9 (e0185151) DOI: 10.1371/journal.pone.0185151)

    Get PDF
    There is an error in the eighth sentence of the PCR amplification section. The correct sentence is: The degenerate nematode specific primers developed in this study (Nem27 primers) comprised Nem1217F which had the 5’-3’ sequence CGN BCC GRA CAC YGT RAG and Nem1619 which had the 5’-3’ sequence GGA AAY AAT TDC AAT TCC CKR TCC

    Estrogen receptor beta expression in prostate adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostate cancer is the most commonly diagnosed cancer in men and the second leading cause of cancer death in men. Estrogen induction of cell proliferation is a crucial step in carcinogenesis of gynecologic target tissues, and there are many studies recently done, showing that prostate cancer growth is also influenced by estrogen. The characterization of estrogen receptor beta (ER-b) brought new insight into the mechanisms underlying estrogen signalling. In the present study, we investigated the expression of estrogen receptor-b (ER-b) in human prostate cancer tissues.</p> <p>Methods</p> <p>We selected 52 paraffin-embedded blocks of prostate needle biopsies in a cross-sectional study to determine frequency and rate of ER-b expression in different grades of prostate adenocarcinoma according to Gleason grading system. Immunohistochemical staining of tissue sections by monoclonal anti ER-b antibody was performed using an Envision method visualising system.</p> <p>Results</p> <p>ER-b expression was seen in tumoral cells of prostatic carcinoma in all 29 cases with low and intermediate tumors (100%) and 19 of 23 cases with high grade tumor (83%). Mean rate of ER-b expression in low & intermediate grade cancers was 68.41% (SD = 25.63) whereas high grade cancers showed 49.48% rate of expression (SD = 28.79).</p> <p>Conclusions</p> <p>ER-b expression is reduced in high grade prostate cancers compared to low & intermediate grade ones (<it>P </it>value 0.027).</p

    A Host-Specific Blocking Primer Combined with Optimal DNA Extraction Improves the Detection Capability of a Metabarcoding Protocol for Canine Vector-Borne Bacteria

    Get PDF
    Bacterial canine vector-borne diseases are responsible for some of the most life-threatening conditions of dogs in the tropics and are typically poorly researched with some presenting a zoonotic risk to cohabiting people. Next-generation sequencing based methodologies have been demonstrated to accurately characterise a diverse range of vector-borne bacteria in dogs, whilst also proving to be more sensitive than conventional PCR techniques. We report two improvements to a previously developed metabarcoding tool that increased the sensitivity and diversity of vector-borne bacteria detected from canine blood. Firstly, we developed and tested a canine-specific blocking primer that prevents cross-reactivity of bacterial primer amplification on abundant canine mitochondrial sequences. Use of our blocking primer increased the number of canine vector-borne infections detected (five more Ehrlichia canis and three more Anaplasma platys infections) and increased the diversity of bacterial sequences found. Secondly, the DNA extraction kit employed can have a significant effect on the bacterial community characterised. Therefore, we compared four different DNA extraction kits finding the Qiagen DNeasy Blood and Tissue Kit to be superior for detection of blood-borne bacteria, identifying nine more A. platys, two more E. canis, one more Mycoplasma haemocanis infection and more putative bacterial pathogens than the lowest performing kit

    Assessment of a metabarcoding approach for the characterisation of vector-borne bacteria in canines from Bangkok, Thailand

    Get PDF
    BACKGROUND: Globally, bacterial vector-borne disease (VBD) exerts a large toll on dogs in terms of morbidity and mortality but nowhere is this more pronounced than in the tropics. Tropical environments permit a burgeoning diversity and abundance of ectoparasites some of which can transmit an extensive range of infectious agents, including bacteria, amongst others. Although some of these vector-borne bacteria are responsible for both animal and human diseases in the tropics, there is a scarcity of epidemiological investigation into these pathogens' prevalence. The situation is further exacerbated by frequent canine co-infection, complicating symptomatology that regular diagnostic techniques may miss or be unable to fully characterise. Such limitations draw attention to the need to develop screening tools capable of detecting a wide range of pathogens from a host simultaneously. RESULTS: Here, we detail the employment of a next-generation sequencing (NGS) metabarcoding methodology to screen for the spectrum of bacterial VBD that are infecting semi-domesticated dogs across temple communities in Bangkok, Thailand. Our NGS detection protocol was able to find high levels of Ehrlichia canis, Mycoplasma haemocanis and Anaplasma platys infection rates as well as less common pathogens, such as "Candidatus Mycoplasma haematoparvum", Mycoplasma turicensis and Bartonella spp. We also compared our high-throughput approach to conventional endpoint PCR methods, demonstrating an improved detection ability for some bacterial infections, such as A. platys but a reduced ability to detect Rickettsia. CONCLUSIONS: Our methodology demonstrated great strength at detecting coinfections of vector-borne bacteria and rare pathogens that are seldom screened for in canines in the tropics, highlighting its advantages over traditional diagnostics to better characterise bacterial pathogens in environments where there is a dearth of research

    A novel metabarcoding diagnostic tool to explore protozoan haemoparasite diversity in mammals: a proof-of-concept study using canines from the tropics

    Get PDF
    Haemoparasites are responsible for some of the most prevalent and debilitating canine illnesses across the globe, whilst also posing a significant zoonotic risk to humankind. Nowhere are the effects of such parasites more pronounced than in developing countries in the tropics where the abundance and diversity of ectoparasites that transmit these pathogens reaches its zenith. Here we describe the use of a novel next-generation sequencing (NGS) metabarcoding based approach to screen for a range of blood-borne apicomplexan and kinetoplastid parasites from populations of temple dogs in Bangkok, Thailand. Our methodology elucidated high rates of Hepatozoon canis and Babesia vogeli infection, whilst also being able to characterise co-infections. In addition, our approach was confirmed to be more sensitive than conventional endpoint PCR diagnostic methods. Two kinetoplastid infections were also detected, including one by Trypanosoma evansi, a pathogen that is rarely screened for in dogs and another by Parabodo caudatus, a poorly documented organism that has been previously reported inhabiting the urinary tract of a dog with haematuria. Such results demonstrate the power of NGS methodologies to unearth rare and unusual pathogens, especially in regions of the world where limited information on canine vector-borne haemoparasites exist
    corecore