2,748 research outputs found

    Universal Power-law Decay in Hamiltonian Systems?

    Full text link
    The understanding of the asymptotic decay of correlations and of the distribution of Poincar\'e recurrence times P(t)P(t) has been a major challenge in the field of Hamiltonian chaos for more than two decades. In a recent Letter, Chirikov and Shepelyansky claimed the universal decay P(t)∼t−3P(t) \sim t^{-3} for Hamiltonian systems. Their reasoning is based on renormalization arguments and numerical findings for the sticking of chaotic trajectories near a critical golden torus in the standard map. We performed extensive numerics and find clear deviations from the predicted asymptotic exponent of the decay of P(t)P(t). We thereby demonstrate that even in the supposedly simple case, when a critical golden torus is present, the fundamental question of asymptotic statistics in Hamiltonian systems remains unsolved.Comment: Phys. Rev. Lett., in pres

    Adsorbate Electric Fields on a Cryogenic Atom Chip

    Full text link
    We investigate the behaviour of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency we measure the field strength versus distance from a 1 mm square of YBCO patterned onto a YSZ chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that, through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface coupling schemes.Comment: 5 pages, 4 figure

    Modeling Infection with Multi-agent Dynamics

    Get PDF
    Developing the ability to comprehensively study infections in small populations enables us to improve epidemic models and better advise individuals about potential risks to their health. We currently have a limited understanding of how infections spread within a small population because it has been difficult to closely track an infection within a complete community. The paper presents data closely tracking the spread of an infection centered on a student dormitory, collected by leveraging the residents' use of cellular phones. The data are based on daily symptom surveys taken over a period of four months and proximity tracking through cellular phones. We demonstrate that using a Bayesian, discrete-time multi-agent model of infection to model real-world symptom reports and proximity tracking records gives us important insights about infec-tions in small populations

    MeV-scale seesaw and leptogenesis

    Get PDF
    We study the type-I seesaw model with three right-handed neutrinos and Majorana masses below the pion mass. In this mass range, the model parameter space is not only strongly constrained by the requirement to explain the light neutrino masses, but also by experimental searches and cosmological considerations. In the existing literature, three disjoint regions of potentially viable parameter space have been identified. In one of them, all heavy neutrinos decay shortly before big bang nucleosynthesis. In the other two regions, one of the heavy neutrinos either decays between BBN and the CMB decoupling or is quasi-stable. We show that previously unaccounted constraints from photodisintegration of nuclei practically rule out all relevant decays that happen between BBN and the CMB decoupling. Quite remarkably, if all heavy neutrinos decay before BBN, the baryon asymmetry of the universe can be quite generically explained by low-scale leptogenesis, i.e. without further tuning in addition to what is needed to avoid experimental and cosmological constraints. This motivates searches for heavy neutrinos in pion decay experiments

    Textural Properties and Structure of Starch-Reinforced Surimi Gels as Affected by Heat-Setting

    Get PDF
    The gel forming behavior of red hake (Urophycis chuss) surimi with and without starch and its relationship to the structure of the gel matrix were studied. For surimi gels without starch, a combination of preheat- setting at 40 C and cooking at 90 C resulted in significantly greater gel strength than cooking alone. However, preheat - setting of gels containing wheat or potato starch had no significant effect on gel strength demonstrating an opposite trend in gel strength due to the differences in swelling power, water holding ability and gelatinization temperature between potato and wheat starches. This difference in gel forming behavior due to the sources of starch and heat- setting prior to cooking correlated with changes in the structure of the matrix as evidenced by the results of image analysis. An examination of the microstructure of the gel matrix by light and electron microscopy showed that the structural differences may be due to the different protein matrix density as reflected in the increased gel strength

    Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts

    No full text
    A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 mu L of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions

    Textural and Microstructural Properties of Frozen Fish Mince as Affected by the Addition of Nonfish Proteins and Sorbitol

    Get PDF
    Changes in textural and microstructural properties of washed and unwashed frozen fish mince were studied as affected by the addition of non fish proteins (soy protein isolate, milk protein isolate, egg white, and wheat gluten at 2 , 4 or 6%) and 6% crystalline sorbitol. Soy and milk proteins and sorbitol reduced the hardness of frozen fish mince, while egg white and wheat gluten made the texture firmer without rubberiness developing after frozen storage. All nonfish proteins and sorbitol stabilized the myofibrillar organization by reducing freeze-induced contraction of myofibrils. The mechanisms of reducing texture hardening appear to be different between sorbitol and nonfish proteins. Water binding properties and dispersibility made the difference among nonfish proteins in reducing freeze-contraction of myofibrils. Nonfish proteins not only reduced texture hardening during frozen storage, but also modified texture during cooki ng as they underwent thermal gelation specific to each protein used
    • …
    corecore