314 research outputs found

    Influence of Refractive Index Differences on the Signal Strength for Raman-Spectroscopic Measurements of Double Emulsion Droplets

    Get PDF
    Double emulsions show great potential for encapsulating active substances and protecting them against external influences. However, they tend to become unstable during storage. Research on double emulsions, therefore, focuses on maintaining their microstructure during their shelf life. Optical measurement methods, such as Raman spectroscopy, have hardly been used to date to analyze the microstructure of double emulsions, mainly due to multiple scattering effects. This study investigates the influence of refractive index matching of double emulsion phases by measuring the Raman signal strength of the inner water phase for different refractive index combinations. Ammonium nitrate and glycerol are added to the inner and outer water phase, respectively, to change the refractive indices of both phases. Additionally, polyvinyl alcohol serves as an emulsifier in the outer water phase. The oil phase consists of silicone oil and Dowsil Resin XR 0497 as the emulsifier. The refractive index of the oil phase is kept constant. For individual phase boundaries of single droplets, the refractive index matching plays a minor role. However, if there are many droplets with correspondingly numerous phase boundaries, which leads to multiple scattering during the measurement, the matching has a significant influence on the signal strength of the inner phase. When measuring double emulsions, the phases should always be matched, as this results in higher signals and improves the sensitivity of the measurement

    Measurement of the Filling Degree and Droplet Size of Individual Double Emulsion Droplets Using Raman Technologies

    Get PDF
    Double emulsions arouse great interest in various industries due to their ability to encapsulate value-adding ingredients. However, they tend to be unstable due to their complex structure. Several measurement techniques have already been developed to study and monitor the stability of double emulsions. Especially for the measurement of the filling degree of double emulsions, so far there is no reliable method available. In this paper, a measurement system is presented that can measure the filling degree of water-in-oil-in-water (W/O/W) double emulsions by both spectrometrical and photometrical means. The method is based on the Raman effect and does not require any sample preparation, and the measurement has no negative influence on the double emulsion. It is shown that both spectrometric and photometric Raman techniques can reliably distinguish between double emulsions with filling degrees that have a 0.5% difference. Additionally, oil droplet sizes can be photometrically measured. Furthermore, the measurement system can be integrated into both inline and online emulsification processes

    Monitoring of Osmotic Swelling Induced Filling Degree Changes in WOW Double Emulsions Using Raman Technologies

    Get PDF
    Due to their nested structure, double emulsions have the potential to encapsulate value-adding substances until their application, making them of interest to various industries. However, the complex, nested structure negatively affects the stability of double emulsions. Still, there is a lack of suitable measurement technology to fundamentally understand the cause of the instability mechanisms taking place. This study presents a novel measurement method to continuously track filling degree changes due to water diffusion in a water-in-oil-in-water (W1/O/W2) double emulsion droplet. The measurement method is based on the Raman effect and provides both photometric and spectrometric data. No sample preparation is required, and the measurement does not affect the double emulsion droplet

    Retrograde False Channel Perfusion: A Complication of Cardiopulmonary Bypass during Repair of Dissecting Aneurysms

    Get PDF
    The current surgical treatment of dissecting thoracic aneurysms that originate above the aortic valve and dissect distally (Type I—De Bakey [3]) requires cardiopulmonary bypass for repair of the proximal intimal tear and obliteration of the false lumen [1, 2, 4, 5]. When the dissecting process extends toward the femoral arteries, cannulation of these vessels may result in perfusion of the false lumen. In addition, although a femoral cannula is inserted into the true lumen, perfusion of the false channel may occur through large reentry sites in the distal abdominal aorta or beyond the bifurcation. Retrograde arterial flow through the false lumen would jeopardize the blood flow to the central nervous system and to other vital organs. We have observed this complication in 2 patients with complete aortic dissection (Type I) during what appeared to be an otherwise adequate surgical procedure

    Interpretation of photocurrent transients at semiconductor electrodes:Effects of band-edge unpinning

    Get PDF
    The transient photocurrent response of semiconductor electrodes to chopped illumination often shows spikes and overshoots that are usually interpreted as evidence that surface recombination is occurring. In the case of the high intensities used for light-driven water splitting, the interpretation is less straightforward since the electron transfer reactions are so slow that the minority carrier concentration at or near the surface increases to high values that modify the potential drop across the Helmholtz layer in the electrolyte, leading to ‘band edge unpinning’. In addition, changes in chemical composition of the surface or local changes in pH may also alter the potential distribution across the semiconductor/electrolyte junction. A quantitative theory of band edge unpinning due to minority carrier build up is presented, and numerical calculations of transient photocurrent responses are compared with experimental examples for n-type Fe2O3 and p-type lithium-doped CuO electrodes. It is shown that the apparently high reaction orders (up to third order) with respect to hole concentration reported for hematite photoanodes can be explained as arising from an acceleration of hole transfer by the increased voltage drop across the Helmholtz layer associated with band edge unpinning. The limitations of the band edge unpinning model are discussed considering additional effects associated with modification of the potential distribution brought about by light-induced changes in surface composition, surface dipoles and surface ionic charge.</p

    Solvatochromic covalent organic frameworks.

    Get PDF
    Covalent organic frameworks (COFs) are an emerging class of highly tuneable crystalline, porous materials. Here we report the first COFs that change their electronic structure reversibly depending on the surrounding atmosphere. These COFs can act as solid-state supramolecular solvatochromic sensors that show a strong colour change when exposed to humidity or solvent vapours, dependent on vapour concentration and solvent polarity. The excellent accessibility of the pores in vertically oriented films results in ultrafast response times below 200 ms, outperforming commercially available humidity sensors by more than an order of magnitude. Employing a solvatochromic COF film as a vapour-sensitive light filter, we demonstrate a fast humidity sensor with full reversibility and stability over at least 4000 cycles. Considering their immense chemical diversity and modular design, COFs with fine-tuned solvatochromic properties could broaden the range of possible applications for these materials in sensing and optoelectronics

    Roadmap on quantum optical systems

    Get PDF
    This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast- developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future

    Maternal diet-induced obesity during pregnancy alters lipid supply to mouse E18.5 fetuses and changes the cardiac tissue lipidome in a sex- dependent manner

    Get PDF
    Maternal obesity during pregnancy has immediate and long-term detrimental effects on the offspring heart. In this study, we characterized the cardiac and circulatory lipid profiles in late gestation E18.5 fetuses of diet-induced obese pregnant mice and established the changes in lipid abundance and fetal cardiac transcriptomics. We used untargeted and targeted lipidomics and transcriptomics to define changes in the serum and cardiac lipid composition and fatty acid metabolism in male and female fetuses. From these analyses we observed: (1) maternal obesity affects the maternal and fetal serum lipidome distinctly; (2) female fetal heart lipidomes are more sensitive to maternal obesity than males; (3) changes in lipid supply might contribute to early expression of lipolytic genes in mouse hearts exposed to maternal obesity. These results highlight the existence of sexually dimorphic responses of the fetal heart to the same in utero obesogenic environment and identify lipids species that might mediate programming of cardiovascular health.MRC Metabolic Diseases Unit [MRC_MC_UU_00014/4] Cambridge Home and EU Student Scholarship British Heart Foundation studentship [FS/12/64/30001] II was supported by a British Heart Foundation studentship [FS/18/56/35177
    corecore