63 research outputs found
Epistasis between MicroRNAs 155 and 146a during T Cell-Mediated Antitumor Immunity
An increased understanding of antitumor immunity is necessary for improving cell-based immunotherapies against human cancers. Here, we investigated the roles of two immune system-expressed microRNAs (miRNAs), miR-155 and miR-146a, in the regulation of antitumor immune responses. Our results indicate that miR-155 promotes and miR-146a inhibits interferon γ (IFNγ) responses by T cells and reduces solid tumor growth in vivo. Using a double-knockout (DKO) mouse strain deficient in both miR-155 and miR-146a, we have also identified an epistatic relationship between these two miRNAs. DKO mice had defective T cell responses and tumor growth phenotypes similar to miR-155^(−/−) mice. Further analysis of the T cell compartment revealed that miR-155 modulates IFNγ expression through a mechanism involving repression of Ship1. Our work reveals critical roles for miRNAs in the reciprocal regulation of CD4^+ and CD8^+ T cell-mediated antitumor immunity and demonstrates the dominant nature of miR-155 during its promotion of immune responses
MicroRNA 155 and viral-induced neuroinflammation
MicroRNA (miRNA) regulation of gene expression is becoming an increasingly recognized mechanism by which host immune responses are governed following microbial infection. miRNAs are short, non-coding RNAs that repress translation of target genes, and have been implicated in a number of activities that modulate host immune responses, including the regulation of immune cell proliferation, survival, expansion, differentiation, migration, polarization, and effector function. This review highlights several examples in which mammalian-encoded miR-155 influences immune responses following viral infection of the CNS
miR-155 Promotes T Follicular Helper Cell Accumulation during Chronic, Low-Grade Inflammation
Chronic inflammation is a contributing factor to most life-shortening human diseases. However, the molecular and cellular mechanisms that sustain chronic inflammatory responses remain poorly understood, making it difficult to treat this deleterious condition. Using a mouse model of age-dependent inflammation that results from a deficiency in miR-146a, we demonstrate that miR-155 contributed to the progressive inflammatory disease that emerged as Mir146a(-/-) mice grew older. Upon analyzing lymphocytes from inflamed versus healthy middle-aged mice, we found elevated numbers of T follicular helper (Tfh) cells, germinal center (GC) B cells, and autoantibodies, all occurring in a miR-155-dependent manner. Further, Cd4-cre Mir155(fl/fl) mice were generated and demonstrated that miR-155 functions in T cells, in addition to its established role in B cells, to promote humoral immunity in a variety of contexts. Taken together, our study discovers that miR-146a and miR-155 counterregulate Tfh cell development that drives aberrant GC reactions during chronic inflammation
Recommended from our members
miR-155 Promotes T Follicular Helper Cell Accumulation during Chronic, Low-Grade Inflammation
Chronic inflammation is a contributing factor to most life-shortening human diseases. However, the molecular and cellular mechanisms that sustain chronic inflammatory responses remain poorly understood, making it difficult to treat this deleterious condition. Using a mouse model of age-dependent inflammation that results from a deficiency in miR-146a, we demonstrate that miR-155 contributed to the progressive inflammatory disease that emerged as Mir146a(-/-) mice grew older. Upon analyzing lymphocytes from inflamed versus healthy middle-aged mice, we found elevated numbers of T follicular helper (Tfh) cells, germinal center (GC) B cells, and autoantibodies, all occurring in a miR-155-dependent manner. Further, Cd4-cre Mir155(fl/fl) mice were generated and demonstrated that miR-155 functions in T cells, in addition to its established role in B cells, to promote humoral immunity in a variety of contexts. Taken together, our study discovers that miR-146a and miR-155 counterregulate Tfh cell development that drives aberrant GC reactions during chronic inflammation
- …