34 research outputs found

    Lung adenocarcinoma promotion by air pollutants

    Get PDF
    A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 μm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1β. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for PM2.5 air pollutants and provide impetus for public health policy initiatives to address air pollution to reduce disease burden

    Flammability and the heat of combustion of natural fuels: a review

    No full text
    Heat of combustion (HoC) is a key characteristic of fuels when analyzing and modeling wildfire scenarios. Despite significant differences in the structure of fuels from different environments, HoC is frequently considered a constant. This article briefly reviews methods used to describe natural fuels and the various different definitions of HoC. We also summarize measured values of HoC and elemental analyses of 238 plant genera reported in 28 papers since 1973. A statistical analysis of these data provided mean values and standard deviations of HoC for fuels according to six broad plant functional groups. Permutational Multivariate Analysis of Variance (PERMANOVA) demonstrated significant differences in the HoC with ground fuels and softwoods having particularly high values. Net heat of combustion was calculated for four fuel groups and the tabulated data may help to improve wildfire modeling and highlights fuels where further measurements of HoC are required
    corecore