12 research outputs found

    Ovarian complete hydatidiform mole: case study with molecular analysis and review of the literature

    No full text
    Ectopic complete molar pregnancy in the ovary is an exceptionally rare event. Here we present a case of ovarian complete hydatidiform mole in a 20-year-old gravida 2 para 1 woman. At presentation, the patient underwent excision of a hemorrhagic left ovarian cyst, with routine sections demonstrating a hemorrhagic corpus luteum with a single microscopic focus of detached atypical trophoblast, without chorionic villi. Subsequent left salpingo-oophorectomy for persistently elevated human chorionic gonadotropin led to a final diagnosis of complete hydatidiform mole arising in the ovary. The fallopian tube was unremarkable. Zygosity was determined using short tandem repeat analysis, confirming the diagnosis of monospermic complete mole. In the clinical setting of a markedly elevated human chorionic gonadotropin level and an ovarian mass, histopathologic examination is critical in distinguishing ectopic pregnancy from choriocarcinoma. Short tandem repeat analysis can be a useful adjunct to histologic diagnosis in challenging cases

    Denaturing High-Performance Liquid Chromatography for Detecting and Typing Genital Human Papillomavirus

    Get PDF
    Human papillomaviruses (HPVs) are important in the development of human cancers, including cervical and oral tumors. However, most existing methods for HPV typing cannot routinely distinguish among the more than 100 distinct types of HPV or the natural HPV intratypic variants that have also been documented. To address this problem, we developed a novel method, general primer-denaturing high-performance liquid chromatography (GP-dHPLC), for the detection and typing of genital HPV using an automated 96-well plate format. GP-dHPLC uses general primer PCR (GP-PCR) to amplify the viral DNA and then analyzes the GP-PCR products by denaturing high-performance liquid chromatography (dHPLC). A number of different primer pairs with homology to most known genital HPV types were tested, and the L1C1-L1C2M pair specific for the L1 region of the viral genome was chosen. A set of HPV standard control patterns, consisting of those for HPV types 16, 18, 31, 33, 39, 45, 51, 52, 56, 58, 59, 6, and 11, was established for genital HPV typing. One hundred eighty-six frozen and formalin-fixed cervical cancer tissue samples were analyzed for the presence of HPV and the HPV type by this method, and 95.8% of them were found to contain HPV DNA. GP-dHPLC accurately discriminated among HPV variants that differed by as little as one nucleotide. Several new variants of HPV types 16, 18, 39, 45, 52, and 59 were identified. Moreover, multiple HPV infections were detected in 26.6% of the samples. Our results indicate that HPV typing by GP-dHPLC permits discrimination of common genital HPV types, detection of multiple HPV infections, and identification of HPV variants in clinical samples

    Penetrance and Expressivity of MSH6 Germline Mutations in Seven Kindreds Not Ascertained by Family History

    Get PDF
    Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by inherited mutations in DNA mismatch-repair genes, most commonly MLH1 or MSH2. The role MSH6 plays in inherited cancer susceptibility is less well defined. The aim of this study was to investigate the penetrance and expressivity of MSH6 mutations in kindreds ascertained through endometrial cancer probands unselected for family history. Detailed pedigrees were constructed for six MSH6 mutation carriers. All reported cancers and precancers were confirmed, and tissues were obtained when available. Tumors were analyzed for microsatellite instability (MSI) and for expression of MSH2, MLH1, and MSH6. MSH6 mutation status was determined for 59 family members. Of these 59 individuals, 19 (32%) had confirmed cancers and precancers. There was an excess of mutation carriers among the 19 affected family members (11 [58%] of 19) compared with those among the 40 unaffecteds (8 [20%] of 40, P=.0065, odds ratio = 5.5, 95% CI = 1.66–18.19). In four of the seven tumors analyzed from mutation carriers other than the probands, MSI and/or MMR protein expression was consistent with the involvement of MSH6. Overall estimated penetrance of the MHS6 mutations was 57.7%. Of the tumors in mutation carriers, 78% were part of the extended HNPCC spectrum. This study demonstrates that MSH6 germline mutations are, indeed, associated with increased cancer risk and that the penetrance of mutations may be higher than appreciated elsewhere. A combination of MSI and immunohistochemistry analyses may be helpful in screening for MSH6 mutation carriers
    corecore