191 research outputs found

    Electroweak Phase Transitions in left-right symmetric models

    Get PDF
    We study the finite-temperature effective potential of minimal left-right symmetric models containing a bidoublet and two triplets in the scalar sector. We perform a numerical analysis of the parameter space compatible with the requirement that baryon asymmetry is not washed out by sphaleron processes after the electroweak phase transition. We find that the spectrum of scalar particles for these acceptable cases is consistent with present experimental bounds.Comment: 20 pages, 5 figures (included), some comments added, typos corrected and new references included. Final version to appear in PR

    Gauge Dependence of Mass and Condensate in Chirally Asymmetric Phase of Quenched QED3

    Get PDF
    We study three dimensional quenched Quantum Electrodynamics in the bare vertex approximation. We investigate the gauge dependence of the dynamically generated Euclidean mass of the fermion and the chiral condensate for a wide range of values of the covariant gauge parameter ξ\xi. We find that (i) away from ξ=0\xi=0, gauge dependence of the said quantities is considerably reduced without resorting to sophisticated vertex {\em ansatze}, (ii) wavefunction renormalization plays an important role in restoring gauge invariance and (iii) the Ward-Green-Takahashi identity seems to increase the gauge dependence when used in conjunction with some simplifying assumptions. In the Landau gauge, we also verify that our results are in agreement with those based upon dimensional regularization scheme within the numerical accuracy available.Comment: 14 pages, 11 figures, uses revte

    Structure of the Quark Propagator at High Temperature

    Get PDF
    In the high temperature, chirally invariant phase of QCD, the quark propagator is shown to have two sets of poles with different dispersion relations. A reflection property in momentum space relates all derivatives at zero-momentum of the particle and hole energies, the particle and hole damping rates, and the particle and hole residues. No use is made of perturbation theory.Comment: 8 pages, Latex twocolum

    Opinion dynamics: models, extensions and external effects

    Full text link
    Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]Comment: 42 pages, 6 figure

    The Attributed Pi Calculus with Priorities

    Get PDF
    International audienceWe present the attributed π\pi-calculus for modeling concurrent systems with interaction constraints depending on the values of attributes of processes. The π\pi-calculus serves as a constraint language underlying the π\pi-calculus. Interaction constraints subsume priorities, by which to express global aspects of populations. We present a nondeterministic and a stochastic semantics for the attributed π\pi-calculus. We show how to encode the π\pi-calculus with priorities and polyadic synchronization π\pi@ and thus dynamic compartments, as well as the stochastic π\pi-calculus with concurrent objects spico. We illustrate the usefulness of the attributed π\pi-calculus for modeling biological systems at two particular examples: Euglena’s spatial movement in phototaxis, and cooperative protein binding in gene regulation of bacteriophage lambda. Furthermore, population-based model is supported beside individual-based modeling. A stochastic simulation algorithm for the attributed π\pi-calculus is derived from its stochastic semantics. We have implemented a simulator and present experimental results, that confirm the practical relevance of our approach

    Search for composite and exotic fermions at LEP 2

    Get PDF
    A search for unstable heavy fermions with the DELPHI detector at LEP is reported. Sequential and non-canonical leptons, as well as excited leptons and quarks, are considered. The data analysed correspond to an integrated luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172 GeV and 161 GeV. The search for pair-produced new leptons establishes 95% confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2, depending on the channel. The search for singly produced excited leptons and quarks establishes upper limits on the ratio of the coupling of the excited fermio

    Search for lightest neutralino and stau pair production in light gravitino scenarios with stau NLSP

    Get PDF
    Promptly decaying lightest neutralinos and long-lived staus are searched for in the context of light gravitino scenarios. It is assumed that the stau is the next to lightest supersymmetric particle (NLSP) and that the lightest neutralino is the next to NLSP (NNLSP). Data collected with the Delphi detector at centre-of-mass energies from 161 to 183 \GeV are analysed. No evidence of the production of these particles is found. Hence, lower mass limits for both kinds of particles are set at 95% C.L.. The mass of gaugino-like neutralinos is found to be greater than 71.5 GeV/c^2. In the search for long-lived stau, masses less than 70.0 to 77.5 \GeVcc are excluded for gravitino masses from 10 to 150 \eVcc . Combining this search with the searches for stable heavy leptons and Minimal Supersymmetric Standard Model staus a lower limit of 68.5 \GeVcc may be set for the stau mas

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    corecore