6 research outputs found

    A clinical measurement to quantify spasticity in children with cerebral palsy by integration of multidimensional signals

    No full text
    Most clinical tools for measuring spasticity, such as the Modified Ashworth Scale (MAS) and the Modified Tardieu Scale (MTS), are not sufficiently accurate or reliable. This study investigated the clinimetric properties of an instrumented spasticity assessment. Twenty-eight children with spastic cerebral palsy (CP) and 10 typically developing (TD) children were included. Six of the children with CP were retested to evaluate reliability. To quantify spasticity in the gastrocnemius (GAS) and medial hamstrings (MEH), three synchronized signals were collected and integrated: surface electromyography (sEMG); joint-angle characteristics; and torque. Muscles were manually stretched at low velocity (LV) and high velocity (HV). Spasticity parameters were extracted from the change in sEMG and in torque between LV and HV. Reliability was determined with intraclass-correlation coefficients and the standard error of measurement; validity by assessing group differences and correlating spasticity parameters with the MAS and MTS. Reliability was moderately high for both muscles. Spasticity parameters in both muscles were higher in children with CP than in TD children, showed moderate correlation with the MAS for both muscles and good correlation to the MTS for the MEH. Spasticity assessment based on multidimensional signals therefore provides reliable and clinically relevant measures of spasticity. Moreover, the moderate correlations of the MAS and MTS with the objective parameters further stress the added value of the instrumented measurements to detect and investigate spasticity, especially for the GAS

    The use of botulinum toxin A in children with cerebral palsy, with a focus on the lower limb

    Get PDF
    Purpose The purpose of this review is to clarify the role of botulinum toxin serotype A (BTX-A) in the treatment of children with cerebral palsy (CP), with a special focus on the lower limb. Background The treatment of spasticity is central in the clinical management of children with CP. BTX-A blocks the release of acetylcholine at the motor end plate, causing a temporary muscular denervation and, in an indirect way, a reduced spasticity. Children with increased tone develop secondary problems over time, such as muscle contractures and bony deformities, which impair their function and which need orthopaedic surgery. However in these younger children, delaying surgery is crucial because the results of early surgical interventions are less predictable and have a higher risk of failure and relapse. As BTX-A treatment reduces tone in a selective way, it allows a better motor control and muscle balance across joints, resulting in an improved range of motion and potential to strengthen antagonist muscles, when started at a young age. The effects are even more obvious when the correct BTX-A application is combined with other conservative therapies, such as physiotherapy, orthotic management and casts. There is now clear evidence that the consequences of persistent increased muscle tone can be limited by applying an integrated multi-level BTX-A treatment approach. Nevertheless, important challenges such as patient selection, defining appropriate individual goals, timing, dosing and dilution, accuracy of injection technique and how to measure outcomes will be questioned. Therefore, ‘‘reflection is more important than injection’’ remains an actual statement.status: publishe
    corecore