177 research outputs found
Imaging Localized States in Graphene Nanostructures
Probing techniques with spatial resolution have the potential to lead to a
better understanding of the microscopic physical processes and to novel routes
for manipulating nanostructures. We present scanning-gate images of a graphene
quantum dot which is coupled to source and drain via two constrictions. We
image and locate conductance resonances of the quantum dot in the
Coulomb-blockade regime as well as resonances of localized states in the
constrictions in real space.Comment: 18 pages, 7 figure
High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core "DSB" response specific to clastogenic treatments.
Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as "collateral" damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR) treatment, HZE (1 GeV Fe(26+) high mass, high charge, and high energy relativistic particles) and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs), but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5-24 h after irradiation) in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the "DSB response" were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 h post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 h after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing "extended night." This response was not apparent in gamma-irradiated plants
Graphene Rings in Magnetic Fields: Aharonov-Bohm Effect and Valley Splitting
We study the conductance of mesoscopic graphene rings in the presence of a
perpendicular magnetic field by means of numerical calculations based on a
tight-binding model. First, we consider the magnetoconductance of such rings
and observe the Aharonov-Bohm effect. We investigate different regimes of the
magnetic flux up to the quantum Hall regime, where the Aharonov-Bohm
oscillations are suppressed. Results for both clean (ballistic) and disordered
(diffusive) rings are presented. Second, we study rings with smooth mass
boundary that are weakly coupled to leads. We show that the valley degeneracy
of the eigenstates in closed graphene rings can be lifted by a small magnetic
flux, and that this lifting can be observed in the transport properties of the
system.Comment: 12 pages, 9 figure
Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy
We report high resolution angle-resolved photoemission spectroscopy (ARPES)
studies of the electronic structure of BaFeAs, which is one of the
parent compounds of the Fe-pnictide superconductors. ARPES measurements have
been performed at 20 K and 300 K, corresponding to the orthorhombic
antiferromagnetic phase and the tetragonal paramagnetic phase, respectively.
Photon energies between 30 and 175 eV and polarizations parallel and
perpendicular to the scattering plane have been used. Measurements of the Fermi
surface yield two hole pockets at the -point and an electron pocket at
each of the X-points. The topology of the pockets has been concluded from the
dispersion of the spectral weight as a function of binding energy. Changes in
the spectral weight at the Fermi level upon variation of the polarization of
the incident photons yield important information on the orbital character of
the states near the Fermi level. No differences in the electronic structure
between 20 and 300 K could be resolved. The results are compared with density
functional theory band structure calculations for the tetragonal paramagnetic
phase.Comment: 11 pages, 5 figure
Spatial mapping and manipulation of two tunnel-coupled quantum dots
The metallic tip of a scanning force microscope operated at 300 mK is used to
locally induce a potential in a fully controllable double quantum dot defined
via local anodic oxidation in a GaAs/AlGaAs heterostructure. Using scanning
gate techniques we record spatial images of the current through the sample for
different numbers of electrons on the quantum dots (i.e., for different quantum
states). Owing to the spatial resolution of current maps, we are able to
determine the spatial position of the individual quantum dots, and investigate
their apparent relative shifts due to the voltage applied to a single gate
Photoinduced Br Desorption from CsBr Thin Films Grown on Cu(100)
Thin films of CsBr deposited onto metals such as copper are potential photocathode materials for light sources and other applications. We investigate desorption dynamics of Br atoms from CsBr films grown on insulator (KBr, LiF) and metal (Cu) substrates induced by sub-bandgap 6.4 eV laser pulses. The experimental results demonstrate that the peak kinetic energy of Br atoms desorbed from CsBr/Cu films is much lower than that for the hyperthermal desorption from CsBr/LiF films. Kelvin probe measurements indicate negative charge at the surface following Br desorption from CsBr/Cu films. Our ab initio calculations of excitons at CsBr surfaces demonstrate that this behavior can be explained by an exciton model of desorption including electron trapping at the CsBr surface. Trapped negative charges reduce the energy of surface excitons available for Br desorption. We examine the electron-trapping characteristics of low-coordinated sites at the surface, in particular, divacancies and kink sites. We also provide a model of cation desorption caused by Franck-Hertz excitation of F centers at the surface in the course of irradiation of CsBr/Cu films. These results provide new insights into the mechanisms of photoinduced structural evolution of alkali halide films on metal substrates and activation of metal photocathodes coated with CsBr
Triple-Pomeron Matrix Model for Dispersive Corrections to Nucleon-Nucleus Total Cross Section
Dispersive corrections to the total cross section for high-energy scattering
from a heavy nucleus are calculated using a matrix model, based on the
triple-Pomeron behavior of diffractive scattering from a single nucleon, for
the cross section operator connecting different states of the projectile
nucleon . Energy-dependent effects due to the decrease in longitudinal momentum
transfers and the opening of more channels with increasing energy are included.
The three leading terms in an expansion in the number of inelastic transitions
are evaluated and compared to exact results for the model in the uniform
nuclear density approximation for the the scattering of nucleons from Pb^{208}
for laboratory momenta ranging from 50 to 200 GeV/c.Comment: 16 pages, 2 figures, RevTex
Dirac Spectrum in Piecewise Constant One-Dimensional Potentials
We study the electronic states of graphene in piecewise constant potentials
using the continuum Dirac equation appropriate at low energies, and a transfer
matrix method. For superlattice potentials, we identify patterns of induced
Dirac points which are present throughout the band structure, and verify for
the special case of a particle-hole symmetric potential their presence at zero
energy. We also consider the cases of a single trench and a p-n junction
embedded in neutral graphene, which are shown to support confined states. An
analysis of conductance across these structures demonstrates that these
confined states create quantum interference effects which evidence their
presence.Comment: 10 pages, 12 figures, additional references adde
On the determination of the Fermi surface in high-Tc superconductors by angle-resolved photoemission spectroscopy
We study the normal state electronic excitations probed by angle resolved
photoemission spectroscopy (ARPES) in Bi2201 and Bi2212. Our main goal is to
establish explicit criteria for determining the Fermi surface from ARPES data
on strongly interacting systems where sharply defined quasiparticles do not
exist and the dispersion is very weak in parts of the Brillouin zone.
Additional complications arise from strong matrix element variations within the
zone. We present detailed results as a function of incident photon energy, and
show simple experimental tests to distinguish between an intensity drop due to
matrix element effects and spectral weight loss due to a Fermi crossing. We
reiterate the use of polarization selection rules in disentangling the effect
of umklapps due to the BiO superlattice in Bi2212. We conclude that, despite
all the complications, the Fermi surface can be determined unambiguously: it is
a single large hole barrel centered about (pi,pi) in both materials.Comment: Expanded discussion of symmetrization method in Section 5, figures
remain the sam
- …