561 research outputs found
Spectral Control via Multi-Species Effects in PW-Class Laser-Ion Acceleration
Laser-ion acceleration with ultra-short pulse, PW-class lasers is dominated
by non-thermal, intra-pulse plasma dynamics. The presence of multiple ion
species or multiple charge states in targets leads to characteristic
modulations and even mono-energetic features, depending on the choice of target
material. As spectral signatures of generated ion beams are frequently used to
characterize underlying acceleration mechanisms, thermal, multi-fluid
descriptions require a revision for predictive capabilities and control in
next-generation particle beam sources. We present an analytical model with
explicit inter-species interactions, supported by extensive ab initio
simulations. This enables us to derive important ensemble properties from the
spectral distribution resulting from those multi-species effects for arbitrary
mixtures. We further propose a potential experimental implementation with a
novel cryogenic target, delivering jets with variable mixtures of hydrogen and
deuterium. Free from contaminants and without strong influence of hardly
controllable processes such as ionization dynamics, this would allow a
systematic realization of our predictions for the multi-species effect.Comment: 4 pages plus appendix, 11 figures, paper submitted to a journal of
the American Physical Societ
Radio frequency readout of electrically detected magnetic resonance in phosphorus-doped silicon MOSFETs
We demonstrate radio frequency (RF) readout of electrically detected magnetic
resonance in phosphorus-doped silicon metal-oxide field-effecttransistors
(MOSFETs), operated at liquid helium temperatures. For the first time, the Si:P
hyperfine lines have been observed using radio frequency reflectometry, which
is promising for high-bandwidth operation and possibly time-resolved detection
of spin resonance in donor-based semiconductor devices. Here we present the
effect of microwave (MW) power and MOSFET biasing conditions on the EDMR
signals.Comment: 2 pages, 3 figure
Tuning and optimization for a variety of many-core architectures without changing a single line of implementation code using the Alpaka library
We present an analysis on optimizing performance of a single C++11 source
code using the Alpaka hardware abstraction library. For this we use the general
matrix multiplication (GEMM) algorithm in order to show that compilers can
optimize Alpaka code effectively when tuning key parameters of the algorithm.
We do not intend to rival existing, highly optimized DGEMM versions, but merely
choose this example to prove that Alpaka allows for platform-specific tuning
with a single source code. In addition we analyze the optimization potential
available with vendor-specific compilers when confronted with the heavily
templated abstractions of Alpaka. We specifically test the code for bleeding
edge architectures such as Nvidia's Tesla P100, Intel's Knights Landing (KNL)
and Haswell architecture as well as IBM's Power8 system. On some of these we
are able to reach almost 50\% of the peak floating point operation performance
using the aforementioned means. When adding compiler-specific #pragmas we are
able to reach 5 TFLOPS/s on a P100 and over 1 TFLOPS/s on a KNL system.Comment: Accepted paper for the P\^{}3MA workshop at the ISC 2017 in Frankfur
Electrical Detection of Coherent Nuclear Spin Oscillations in Phosphorus-Doped Silicon Using Pulsed ENDOR
We demonstrate the electrical detection of pulsed X-band Electron Nuclear
Double Resonance (ENDOR) in phosphorus-doped silicon at 5\,K. A pulse sequence
analogous to Davies ENDOR in conventional electron spin resonance is used to
measure the nuclear spin transition frequencies of the P nuclear spins,
where the P electron spins are detected electrically via spin-dependent
transitions through Si/SiO interface states, thus not relying on a
polarization of the electron spin system. In addition, the electrical detection
of coherent nuclear spin oscillations is shown, demonstrating the feasibility
to electrically read out the spin states of possible nuclear spin qubits.Comment: 5 pages, 3 figure
Electromechanically induced absorption in a circuit nano-electromechanical system
A detailed analysis of electromechanically induced absorption (EMIA) in a
circuit nano-electromechanical hybrid system consisting of a superconducting
microwave resonator coupled to a nanomechanical beam is presented. By
performing two-tone spectroscopy experiments we have studied EMIA as a function
of the drive power over a wide range of drive and probe tone detunings. We find
good quantitative agreement between experiment and theoretical modeling based
on the Hamiltonian formulation of a generic electromechanical system. We show
that the absorption of microwave signals in an extremely narrow frequency band
(\Delta\omega/2\pi <5 Hz) around the cavity resonance of about 6 GHz can be
adjusted over a range of more than 25 dB on varying the drive tone power by a
factor of two. Possible applications of this phenomenon include notch filters
to cut out extremely narrow frequency bands (< Hz) of a much broader band of
the order of MHz defined by the resonance width of the microwave cavity. The
amount of absorption as well as the filtered frequency is tunable over the full
width of the microwave resonance by adjusting the power and frequency of the
drive field. At high drive power we observe parametric microwave amplification
with the nanomechanical resonator. Due to the very low loss rate of the
nanomechanical beam the drive power range for parametric amplification is
narrow, since the beam rapidly starts to perform self-oscillations.Comment: 16 pages, 5 figure
- …