8,041 research outputs found

    Auxiliary propulsion thruster performance with ion machined accelerator grids

    Get PDF
    A substantial improvement in the performance of an 8-centimeter-diameter auxiliary propulsion thruster was achieved by reducing the diameter of the accelerator grid apertures. The accelerator grid hole geometry was defined by ion machining accelerator grids on an 8-centimeter thruster at thrust levels of 2.2, 4.4, and 6.7 millinewtons was (mN). A thruster with an ion machined accelerator grid was operated at a thrust of 4.4 mN for 1000 hours. The discharge propellant utilization was 92% at an eV/ion of 338. Thruster performance and accelerator grid hole geometry was documented as a function of thrust level. It was also determined that the small hole accelerator grid has a very low backstreaming voltage limit. In fact the thruster can be operated with the acclerator grid held at neutralizer tip potential

    Nonpropulsive applications of ion beams

    Get PDF
    Eight centimeter ion beam sources utilizing xenon and argon have been developed that operate over a wide range of beam energies and currents. Three types of processes have been studied: sputter deposition, ion beam machining, and ion beam surface texturing. The broad range of source operating conditions allows optimum sputter deposition of various materials. An ion beam source was used to ion mill laser reflection holograms using photoresist patterns on silicon. Ion beam texturing was tried with many materials and has a multitude of potential applications

    Cosmological Parameters from the Comparison of the 2MASS Gravity Field with Peculiar Velocity Surveys

    Full text link
    We compare the peculiar velocity field within 65 h−1h^{-1} Mpc predicted from 2MASS photometry and public redshift data to three independent peculiar velocity surveys based on type Ia supernovae, surface brightness fluctuations in ellipticals, and Tully-Fisher distances to spirals. The three peculiar velocity samples are each in good agreement with the predicted velocities and produce consistent results for \beta_{K}=\Omega\sbr{m}^{0.6}/b_{K}. Taken together the best fit βK=0.49±0.04\beta_{K} = 0.49 \pm 0.04. We explore the effects of morphology on the determination of β\beta by splitting the 2MASS sample into E+S0 and S+Irr density fields and find both samples are equally good tracers of the underlying dark matter distribution, but that early-types are more clustered by a relative factor b\sbr{E}/b\sbr{S} \sim 1.6. The density fluctuations of 2MASS galaxies in 8h−18 h^{-1} Mpc spheres in the local volume is found to be \sigma\sbr{8,K} = 0.9. From this result and our value of βK\beta_{K}, we find \sigma_8 (\Omega\sbr{m}/0.3)^{0.6} = 0.91\pm0.12. This is in excellent agreement with results from the IRAS redshift surveys, as well as other cosmological probes. Combining the 2MASS and IRAS peculiar velocity results yields \sigma_8 (\Omega\sbr{m}^/0.3)^{0.6} = 0.85\pm0.05.Comment: 11 pages, ApJ accepte

    An 8-cm electron bombardment thruster for auxiliary propulsion

    Get PDF
    Thruster size, beam current level, and specific impulse trade-offs are considered for mercury electron bombardment ion thrusters to be used for north-south station keeping of geosynchronous spacecraft. An 8-cm diameter thruster operating at 2750 seconds specific impulse at thrust levels of 4.4 mN (1 m1b) to 8.9 mN (2 m6b) with a design life of 20,000 hours and 10,000 cycles is being developed. The thruster will have a dished two-grid system capable of thrust vectoring of + or - 10 degrees in two orthogonal directions. A preliminary thruster has been fabricated and tested; thruster performance characteristics have been determined at 4.45, 6.68, and 8.90 millinewtons

    High performance auxiliary-propulsion ion thruster with ion-machined accelerator grid

    Get PDF
    An improvement in thruster performance was achieved by reducing the diameter of the accelerator grid holes. The smaller accelerator grid holes resulted in a reduction in neutral mercury atoms escaping the discharge chamber, which in turn enhanced the discharge propellant utilization from approximately 68 percent to 92 percent. The accelerator grids were fabricated by ion machining with an 8-centimeter-diameter thruster, and the screen grid holes individually focused ion beamlets onto the blank accelerator grid. The resulting accelerator grid holes are less than 1.12 millimeters in diameter, while previously used accelerator grids had hole diameters of 1.69 millimeters. The thruster could be operated with the small-hole accelerator grid at neutralizer potential

    Optical properties of ion beam textured metals

    Get PDF
    Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements

    Equity Delights to Do Justice and Not by Halves

    Get PDF

    LIVESTOCK FUTURES MARKETS AND RATIONAL PRICE FORMATION: EVIDENCE FOR LIVE CATTLE AND LIVE HOGS

    Get PDF
    The efficiency of livestock futures markets continues to receive attention, particularly with regard to their forward pricing or forecasting ability. The purpose of this paper is to present a more general theory that encompasses the forward pricing concept. It is argued that futures contract prices for competitively produced nonstorable commodities, such as live cattle and live hogs, follow a rational formation process. Futures contract prices reflect expected market conditions when contracts are sufficiently close to the delivery month that the supply of the underlying commodity cannot be changed. However, prior to the period when future supplies are relatively fixed, futures contract prices should adjust to reflect the competitive equilibrium, where output price equals average costs of production. Presented evidence suggests that live cattle and live hog futures markets support the rational price formation hypothesis: prices for distant contracts reflect average costs of feeding. Implications for risk management strategies are considered.Demand and Price Analysis, Livestock Production/Industries,

    A new look at a polar crown cavity as observed by SDO/AIA

    Get PDF
    Context. The Solar Dynamics Observatory (SDO) was launched in February 2010 and is now providing an unprecedented view of the solar activity at high spatial resolution and high cadence covering a broad range of temperature layers of the atmosphere. Aims. We aim at defining the structure of a polar crown cavity and describing its evolution during the erupting process. Methods. We use the high-cadence time series of SDO/AIA observations at 304 Å (50 000 K) and 171 Å (0.6 MK) to determine the structure of the polar crown cavity and its associated plasma, as well as the evolution of the cavity during the different phases of the eruption. We report on the observations recorded on 13 June 2010 located on the north-west limb. Results. We observe coronal plasma shaped by magnetic field lines with a negative curvature (U-shape) sitting at the bottom of a cavity. The cavity is located just above the polar crown filament material. We thus observe the inner part of the cavity above the filament as depicted in the classical three part coronal mass ejection (CME) model composed of a filament, a cavity, and a CME front. The filament (in this case a polar crown filament) is part of the cavity, and it makes a continuous structuring from the filament to the CME front depicted by concentric ellipses (in a 2D cartoon). Conclusions. We propose to define a polar crown cavity as a density depletion sitting above denser polar crown filament plasma drained down the cavity by gravity. As part of the polar crown filament, plasma at different temperatures (ranging from 50 000 K to 0.6 MK) is observed at the same location on the cavity dips and sustained by a competition between the gravity and the curvature of magnetic field lines. The eruption of the polar crown cavity as a solid body can be decomposed into two phases: a slow rise at a speed of 0.6 km s-1 and an acceleration phase at a mean speed of 25 km s-1
    • …
    corecore